Development of disposal sorbents for chloride removal from high-temperature coal-derived gases

PDF Version Also Available for Download.

Description

The objective of this program is to develop alkali-based disposable sorbents capable of reducing HCl vapor concentrations to less than 1 ppmv in coal gas streams at temperatures in the range 400{degrees} to 750{degrees}C and pressures in the range 1 to 20 atm. The primary areas of focus of this program are investigation of different processes for fabricating the sorbents, testing their suitability for different reactor configurations, obtaining kinetic data for commercial reactor design, and updating the economics of the process.

Physical Description

12 p.

Creation Information

Krishnan, G.N.; Wood, B.J. & Canizales, A. November 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 15 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The objective of this program is to develop alkali-based disposable sorbents capable of reducing HCl vapor concentrations to less than 1 ppmv in coal gas streams at temperatures in the range 400{degrees} to 750{degrees}C and pressures in the range 1 to 20 atm. The primary areas of focus of this program are investigation of different processes for fabricating the sorbents, testing their suitability for different reactor configurations, obtaining kinetic data for commercial reactor design, and updating the economics of the process.

Physical Description

12 p.

Notes

OSTI as DE96002117

Source

  • Advanced coal-fired power systems `95 review meeting, Morgantown, WV (United States), 27-29 Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96002117
  • Report No.: DOE/MC/30005--96/C0545
  • Report No.: CONF-9506162--43
  • Grant Number: AC21-93MC30005
  • Office of Scientific & Technical Information Report Number: 125407
  • Archival Resource Key: ark:/67531/metadc622659

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Dec. 17, 2015, 12:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 15

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krishnan, G.N.; Wood, B.J. & Canizales, A. Development of disposal sorbents for chloride removal from high-temperature coal-derived gases, article, November 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc622659/: accessed April 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.