Z, ZX, and X-1: A Realistic Path to High Fusion Yield

PDF Version Also Available for Download.

Description

Z-pinches now constitute the most energetic and powerful sources of x-rays available by a large margin. The Z accelerator at Sandia National Laboratories has produced 1.8 MJ of x-ray energy, 280 TW of power, and hohlraum temperatures of 200 eV. These advances are being applied to inertial confinement fusion (ICF) experiments on Z. The requirements for high fusion yield are exemplified in the target to be driven by the X-1 accelerator. X-1 will drive two z-pinches, each producing 7 MJ of x-ray energy and about 1000 TW of x-ray power. Together, these radiation sources will heat a hohlraum containing the ... continued below

Physical Description

5 p.

Creation Information

COOK, DONALD L. October 7, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Z-pinches now constitute the most energetic and powerful sources of x-rays available by a large margin. The Z accelerator at Sandia National Laboratories has produced 1.8 MJ of x-ray energy, 280 TW of power, and hohlraum temperatures of 200 eV. These advances are being applied to inertial confinement fusion (ICF) experiments on Z. The requirements for high fusion yield are exemplified in the target to be driven by the X-1 accelerator. X-1 will drive two z-pinches, each producing 7 MJ of x-ray energy and about 1000 TW of x-ray power. Together, these radiation sources will heat a hohlraum containing the 4-mm diameter ICF capsule to a temperature exceeding 225 eV for about 10 ns, with the pulse shape required to drive the capsule to high fusion yield, in the range of 200--1000 MJ. Since X-1 consists of two identical accelerators, it is possible to mitigate the technical risk of high yield by constructing one accelerator. This accelerator, ZX, will bridge the gap from Z to X-1 by driving an integrated target experiment with a very efficient energy source, ZX will also provide experimental condition that the full specifications of the X-1 accelerator for high yield are achievable, and that a realistic path to high fission yield exists.

Physical Description

5 p.

Notes

INIS; OSTI as DE00012722

Medium: P; Size: 5 pages

Source

  • 12th IEEE International Pulsed Power Conference, Monterey, CA (US), 06/27/1999--06/30/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-0983C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 12722
  • Archival Resource Key: ark:/67531/metadc622644

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 7, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 12:43 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

COOK, DONALD L. Z, ZX, and X-1: A Realistic Path to High Fusion Yield, article, October 7, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc622644/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.