Stand-off energy sources for Z-pinch implosions

PDF Version Also Available for Download.

Description

An issue of stand-off energy sources is in an early stage of development. Several concepts have been identified as potential solution of the problem. Those based on the total disconnection between the target assembly and the primary energy source have an obvious advantage in that they allow one to relatively easily protect the permanent part. Indeed, a fast projectile travelling at the velocity of 10 km/s covers the distance of 10 m in 1 ms, the time that is sufficient to mechanically shield the line of site. Auxiliary power supply in the form of an electron beam can be protected ... continued below

Physical Description

1.3 Megabytes pages

Creation Information

Ryutov, D & Toor, A July 12, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

An issue of stand-off energy sources is in an early stage of development. Several concepts have been identified as potential solution of the problem. Those based on the total disconnection between the target assembly and the primary energy source have an obvious advantage in that they allow one to relatively easily protect the permanent part. Indeed, a fast projectile travelling at the velocity of 10 km/s covers the distance of 10 m in 1 ms, the time that is sufficient to mechanically shield the line of site. Auxiliary power supply in the form of an electron beam can be protected by using a magnetic wiggling in the transport channel in the permanent part of the facility. Of some help is also the fact that this auxiliary source operates 10 or so microseconds before the fusion energy release occurs. Another advantage of this approach is related to its compatibility with high rep-rate mode, up to tens pulses per second (because there is no need to insert heavy large-volume parts into the reaction chamber). An obvious disadvantage is that the assembly should contain a more or less complex on-board circuitry. Those concepts that are based on the direct mechanical connection between the external pulse-forming line and the disposable inner part of the transmission line (connected in turn to the Z-pinch diode) have an obvious advantage in eliminating any intermediate steps in delivering the energy to the pinch. They work essentially as the presently used Z-pinch devices and should provide the same high efficiency. A difficulty of this approach is related to the presence of the insulating slot in the walls of the reaction chamber that directly links the disposable inner part of the energy transmission system and permanent external energy source. The slot is vulnerable to mechanical perturbations and neutron irradiation that may propagate into the permanent part of the source and cause a damage to it. Mechanical damage could be reduced by the technique of hydrodynamic channeling or hydrodynamic lensing mentioned in Sets 3 and 4. Those concept that are based on the total disconnection between the target assembly and the primary energy source have an obvious advantage in that they allow one to relatively easily protect the permanent part. Indeed, a fast projectile travelling at the velocity of 10 km/s covers the distance of 10 m in 1 ms, the time that is sufficient to mechanically shield the line of site. Auxiliary power supply in the form of an electron beam can be protected by using a magnetic wiggling in the transport channel in the permanent part of the facility. Of some help is also the fact that this auxiliary source operates 10 or so microseconds before the fusion energy release occurs. Another advantage of this approach is related to its compatibility with high rep-rate mode, up to tens pulses per second (because there is no need to insert heavy large-volume parts into the reaction chamber). An obvious disadvantage is that the assembly should contain a more or less complex on-board circuitry.

Physical Description

1.3 Megabytes pages

Source

  • Other Information: PBD: 12 Jul 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-ID-135082
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/13848 | External Link
  • Office of Scientific & Technical Information Report Number: 13848
  • Archival Resource Key: ark:/67531/metadc622627

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 12, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 2:59 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ryutov, D & Toor, A. Stand-off energy sources for Z-pinch implosions, report, July 12, 1999; California. (digital.library.unt.edu/ark:/67531/metadc622627/: accessed January 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.