Altering the equilibrium condition in Sr-doped lanthanum manganite.

PDF Version Also Available for Download.

Description

The material of choice for a solid oxide fuel cell cathode based on a yttria-stabilized zirconia (YSZ) electrolyte is doped lanthanum manganite, (La, Sr)MnO{sub 3}. It excels at many of the attributes necessary for a system to work at the required operating temperature and is flexible enough to allow for materials optimization. Although strontium-doping increases the electronic conductivity of the material, the ionic conductivity of the material remains negligible under operating conditions. Studies have shown that the internal equilibrium of the material heavily favors oxidation of the manganese and rather than the loss of lattice oxygen as a charge compensation ... continued below

Physical Description

11 p.

Creation Information

Carter, J. D.; Krumpelt, M.; Vaughey, J. & Wang, X. May 28, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The material of choice for a solid oxide fuel cell cathode based on a yttria-stabilized zirconia (YSZ) electrolyte is doped lanthanum manganite, (La, Sr)MnO{sub 3}. It excels at many of the attributes necessary for a system to work at the required operating temperature and is flexible enough to allow for materials optimization. Although strontium-doping increases the electronic conductivity of the material, the ionic conductivity of the material remains negligible under operating conditions. Studies have shown that the internal equilibrium of the material heavily favors oxidation of the manganese and rather than the loss of lattice oxygen as a charge compensation mechanism. This lack of oxygen vacancies in the structure retards the ability of the material to conduct oxygen ions; thus the optimized system requires a large number of engineered triple point boundary locations to work efficiently. We have successfully doped the host LSM lattice to alter the interred equilibrium of the material to increase its ionic conductivity and thus lower the cathodic overpotential of the system. Our presentation will discuss these new materials, the results of cell tests, and a number of characterization experiments performed.

Physical Description

11 p.

Notes

OSTI as DE00011832

Medium: P; Size: 11 pages

Source

  • 196th Meeting of the Electrochemical Society, Honolulu, HI (US), 10/17/1999--10/22/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CMT/CP-99141
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11832
  • Archival Resource Key: ark:/67531/metadc622576

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 28, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Carter, J. D.; Krumpelt, M.; Vaughey, J. & Wang, X. Altering the equilibrium condition in Sr-doped lanthanum manganite., article, May 28, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc622576/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.