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ABSTRACT 

We present a new approach for modeling the dynamics of 
collections of objects with internal structure. Based on the fact that 
the behavior of an individual in a population is modified by its 
knowledge of other individuals, a procedure for accounting for 
knowledge in a population of interacting objects is presented. It is 
assumed that each object has partial (or complete) knowledge of 
some (or all) other objects in the population. The dynamical 
equations for the objects are then modified to include the effects of 
this pairwise knowledge. This procedure has the effect of projecting 
out what the population wiZZ do from the much larger space of what 
it could do, i.e., filtering or smoothing the dynamics by replacing the 
complex detailed physical model with an effective model that 
produces the behavior of interest. The procedure therefore provides 
a minimalist approach for obtaining emergent collective behavior. 
The use of knowledge as a dynamical quantity, and its relationship 
to statistical mechanics, thermodynamics, information theory, and 
cognition microstructure are discussed. 
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I. INTRODUCTION 

A general problem that appears in many disciplines is that of modeling the 
behavior of collections of objects. If the objects are nearly identical, the collection 
is termed a population, and the challenge is to derive the emergent collective 
behavior of such populations from the dynamics of the individual objects. A 
common approach in such systems is to specify the dynamics of the individuals, 
and track each individual forward in time, extracting population measures (such 
as mean size of individuals) whenever desired (Lomnicki, 1988). The goal in such 
investigations is to discover ordered states, regions of stability or instability, 
critical parameter values, phase transitions, the effects of perturbations, and 
similar phenomena. 

This paper presents a new approach to population dynamics based on the 
idea that each individual has some knozdedge of other individuals and that its 
behavior is modified by that knowledge. We have a general concept of 
"knowing," and could say that each individual in a population in some sense 
"knows" about other individuals. Clearly, individual behavior in a population 
depends strongly on what (or who) that individual knows, and how that 
knowledge is used. We quantify this idea by postulating a procedure for 
modifying the normal dynamical equations of motion to include the amount and 
distribution of pairwise knowledge among the individuals, and how that 
knowledge is altered by individual interactions and other processes. Thus, 
"knowledge" is regarded as a dynamical quantity, and its evolution in time can 
be described by a set of equations. Introduction of these equations into the 
dynamical system introduces dynamical constvain t s .  These constraints allow 
prediction of what will happen from the much larger range of what could happen. 

There is currently considerable effort on this subject that appears under 
several titles: individual-based ecosystems (DeAngelis and Gross, 1992), artificial 
life (Langton, 1989,1992), cellular automata (Gutowitz, 1991), and connectionism 
(Farmer, 1990), among others. These problems are sometimes described as 
information-driven: the size of a tractable prob1e:m and the speed of the 
computation are determined by the amount of information that must be 
processed (Brillouin, 1962). Usually concomitant to the approach to such 
problems is a search for ways to reduce the amount of information that must be 
carried along. 
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While knowledge and information are similar, they are distinct: information 
is data in  motion; knowledge is data a t  rest. Information is involved in the 
construction of a data structure; knowledge is involved in the use of that data 
structure. Information implies the ability to correctly establish a representation; 
knowledge implies the ability to examine that representation. Information is used 
in correctly storing the answer to a question; knowledge is used in correctly 
recovering the answer to the question. 

What we propose in this work is a hybrid dynamics specifically designed for 
populations of objects that have sufficient internal complexity to have some 
knowledge of other objects and to take actions based at least partially on that 
knowledge. It is most appropriately applied to simple behavior such as schooling 
or flocking, in which the full complexity of the real individual is not necessary to 
produce the collective behavior. A perfect exemplary system is a population of 
simple robots with communicating internal microprocessors: although the 
devices themselves are complex, their actions are determined by a set of simple 
rules modified by small data set (stored knowledge) that can be altered by 
interactions among individuals. This approach should be useful for simple 
animals, robots, globally coupled relaxation oscillators, arrays of point vortices, 
computer networks, vehicular traffic, and a wide variety other individual-based 
systems, including a massively parallel computer. 

Although the dynamical principle presented here will have applications to 
biological, chemical, sociological, and many other systems, our approach to the 
subject is via physics: We seek consistent and useful ways to modify an existing 
physical model to include the effects of pairwise knowledge. We will not track 
the knowledge itself (e.g., the names of books); rather, we will track a quantity 
giving the amount and distribution of that knowledge. This quantity, a matrix K, 
describes what each individual "knows" about every other individual. K is 
precisely defined in terms of physically determined probabilities, hence provides 
a link to statistical mechanics, thermodynamics, and information theory. Because 
the matrix K reasonably approximates the basic dynamics of knowledge in real 
systems, it should be an extremely efficient means for generating very complex 
emergent behavior that reasonably simulates reality. 

In this paper, we define the terminology and describe general properties of 
minimally cognitive population dynamics. Throughout this paper, K is assumed 
to be constant in time. In a companion paper, we investigate some fundamental 
effects that arise when K is not constant. 
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11. INCLUDING KNOWLEDGE IN INDIVIDUAL INTERACTIONS 

We begin by postulating that individuals in the population can be 
represented as carrying along with them a quantity of "knowledge," and that this 
knowledge influences the individuals' behavior. While we assume the 
individuals are capable of storing and processing knowledge, we do not 
necessarily require them to be sufficiently talented to use it in any manner 
resembling humans might associate with intelligence. The individuals may be 
nothing more than simple devices capable of only a small number of reflexive 
actions, or they might be extremely complex organisrns operating on a limited 
number of alternatives. We will sometimes refer to these individuals as having 
cognitive ability, and we will have most iinterest in populations of minimally 
cognitive individtrnls. 

The simplest kind of interaction between individuals is paiuzuise. If the objects 
are simple, i.e., have no internal structure, they interact directly, and the 
interaction obeys Newton's Third Law. If, however, the objects have internal 
structure, the interaction is mediated by an agent, and the interaction need not 
obey Newton's Third Law (cf., Figure - 1). An example is pursuit-and-flight: one 
object may experience an attraction to another object,, while the second feels a 
repulsion. Such dynamics are enabled by the agent, which acts break the 
symmetry between the objects. 

It is implied in this picture that there are two or more kinds of objects in the 
population. Indeed, if all the objects are truly identical, there could be no 
breaking of the symmetry, and Newton's Third Law must be satisfied. However, 
we are interested in modeling populations of complex objects, and therefore we 
can assume the individual objects have minor differences that enable the Agent 
to distinguish them. In this sense, the set of individua'is is not a true population 
(precisely identical individuals). But of course, neither is a real population in 
Nature: every ant, no matter how imperceptibly, is different from every other 
ant. It is conventional to refer to a group of individuals that are alike in most (but 
not all) respects as a "population." 

The detailed nature of the agent is left unspecified: we only assume the 
effective force law, or its equivalent, between any pair of objects. This is really the 
central approximation, and the source of advantage, in the approach taken here: 
we ignore the details of the agent, and use only the effective interactions. 

. 
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111. EFFECTS OF KNOWLEDGE ON POPULATION DYNAMICS 

Next we postulate that the collective emergent behavior of the population will 
be determined, at least in part, by the individuals’ pairwise knowledge. We 
emphasize that qualitatively new behavior results if the individuals have 
cognitive ability [Kampis, 19911. 

Figure 2 presents a graphical representation of the knowledge links in a 
population of 10 individuals. The widths of the connecting lines are proportional 
to the amount of knowledge each individual has of other individuals. While the 
positions of the individuals are arbitrary, they can represent actual positions, 
which would then vary according to the system dynamics. 

As an example, consider flocking in birds. The detailed physics of bird flight 
allows each individual bird to fly wherever it might want, and no flocking 
results. In order to produce flocking, we introduce constraints and additional 
dynamics. These additional factors serve to constrain the collective motion to a 
subset of all possible motions, i.e., produce flocking. The conventional approach 
to introducing these constraints (Kshatriya and Blake, 1992) is to attempt to 
model all the elementary physical factors that determine individual dynamics: 
two birds cannot approach closer than a minimum distance, the power needed to 
maintain flight is minimum for a certain interbird distance, individual birds 
experience a bias in flight direction according to migration pattern, etc. 

What we propose here is that these factors can be more efficiently related to 
knowledge within the individual: each bird has a representation of all other birds, 
and takes its action accordingly. By phrasing these relations as pairwise 
knowledge, we obtain the minimal set of constraints necessary to produce the 
observed emergent collective behavior. We do not attempt to model all of the 
detailed physical processes, but rather to capture their net result through a 
paradigm of pairwise knowledge. 

We emphasize the simplicity of the knowledge necessary for reasonable 
precision. Consider a circling hawk that spots a small animal on the ground. 
How much must the hawk know about its potential prey for it to decide to 
attack? Surely the hawk must know the position and size of the animal, whether 
it is alive, whether it is moving sufficiently slowly that there would be time to 
capture it, etc. But it is quite unnecessary for the hawk to know the species, sex, 
age, stomach contents, and state of parasitism of its victim. In fact, the amount of 
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knowledge that the hawk must have is spectacularly small. We encounter this fact 
in almost every social situation: in general, action:: are taken based on an 
extremely small amount of very specific knowledge, regardless of the complexity 
of the real individual. 

The major motivation for using knowledge in a dynamical model is therefore 
its efficiency. Modeling all the elementary physical ]?recesses is not wrong- 
ultimately it may even yield reasonable emergent behavior-but it becomes 
extremely complicated and is not guaranteed to yield anything meaningful (the 
list of physics effects may be inadequate, the system may be numerically 
intractable, the introduction of many parameters may introduce unacceptable 
uncertainties, the correct procedure for extracting meaningful emergent behavior 
may not be clear, etc.). In contrast, lumping much of the detailed physics into a 
few parameters resembling pairwise knowledge which we postulate from the 
observed behavior of the population will easily produce the appropriate 
emergent behavior-and nothing else. Of course, such lumped model 
simulations will have less detailed predictive ability. The goal here is to find an 
efficient way to produce the gross behavior we want and avoid having to 
consider detail we don’t want. In fact, we seek the rninimal description of the 
system that produces the desired emergent behavior. 

We will be most interested in systems in which the interactions between 
individuals vanish if the pairwise knowledge is zero. When this happens, all 
individuals act independently; there is no collective dynamics and the 
population is nothing more than a collection of individuals behaving 
independently. If the pairwise knowledge in such systems is low-most 
individuals know little or nothing about other individuals-a change in one 
individual will produce a small change in other individuals. If the pairwise 
knowledge is high--most individuals know a great deal about most other 
individuals-the population is strongly interacting, and exhibits collective 
behavior. In the limit that the pairwise knowledge is total (everyone knows 
everything about everyone else), the population is fully connected. In this case an 
effect on one individual is fully felt by all members of the population. This is the 
normal case of physics, in which the individual interactions are fully felt. 
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IV. PHYSICAL DEFINITION OF KNOWLEDGE 

In this section we define the knowledge matrix K in terms of physically well- 
defined probabilities. This grounds the present development within physics, and 
provides links to information theory, thermodynamics, and statistical mechanics. 

Knowledge as probability 
Knowledge, in the traditional use of the word, implies a test: we "know" 

something if we can give the correct answer to a question about that something. 
We imagine repeatedly asking individual { i} to identify the state of individual {j}. 
Two extreme cases are immediately obvious: 

(1) If { i} has complete knowledge of { j } , then { i} always 
(probability=l) correctly identifies the state of {j } ; 

(2) If { i} has no knowledge of {j}, { i} has random probability pr of 
giving the correct answer). 

We now interpolate between these extremes with the following definitions: 

(3) If { i} has partial knowledge of {j}, { i} has some probability pij in 
the range pr c pij c 1 of correctly identifying the state of {j } ; 

(4) If { i} has incorrect knozoledge of {j}, { i }  has some probability pd in 
the range 0 I pij c pr of correctly identifying the state of {j}. 

Thus, we can associate various common expressions about knowledge with 
probabilities (cf., Figure 3). 

In more modern phraseology, we "know" something if we have an internal 
representation of that something. Thus, in order for us to "know" the number 
3.141596, somewhere inside our brain must be a representation of this number. 
The representation is similar to a reference: it can be consulted by the individual 
in order to determine appropriate action. This definition avoids having to model 
the process of hearing and answering the question. We will assume in this paper 
that the process of converting stored knowledge into an answer to a question is 
perfect. Thus, the following statements will be taken as equivalent: 
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{i} correctly identifies the state of {j} 
{ i} has a true representation of { j } c {i} "knows" the state of {j} 

pij = the probability that 

We postulate that the probability matrix p is derivable from physics. It is a 
well-defined dynamical quantity that follows from the structure and evolution of 
the individual. Whether we can do this in practice for an arbitrary system is 
immaterial to the present discussion. 

with probability pij = 1. If { i }  has no knowledge of {j} (Ki=O), then { i }  would 
correctly identify the state of {j} with the random probability pi, = pr = 1/G. These 
limiting cases are most simply connected by the linear relation 

With this definition, individual { i} knows between nothing and everything 
(inclusive) about another individual {j} . Note that Kii = 1 , which means every 
individual always knows everything about itself. 

For Olpb<l/G, {i} has less than a random probability of correctly identifying 
the state of {j} , i.e., it is worse than a poor guesser. For pij=O, the guess is nlwnys 
wrong. We would say that { i }  has negative knozuledge about {j}, and we can 
extend the definition of KU to include this possibility: 
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With this definition, individual { i }  has incorrect knowledge of another 
individual {j}. This situation arises for example when, as {i} attempts to establish 
an internal representation of {j}, some process systematically causes it to be done 
incorrectly. Such situations are well-known, e.g., dyslexia. 

We can now invert the two equations above to obtain &j in terms of pij: 

Gpij - 1 
G-1 

Kij = 

which we take to be the formal definition of Kg . 
Figure 4 shows the relation between pij and Kij. The piecewise linear relation 

is by no means unique; it is proposed as the simplest nontrivial relationship. 
We emphasize again that we will not track knowledge itself, but only a 

numerical quantity Kg in the interval (-l,+l) that is a plausible measure of the 
amount of knowledge. Rather than introduce a new term for K, we simply refer to it 
as the knowledge. 

Different kinds of knowledge 
The property of individual {j} known by individual { i }  quantified by the 

matrix element K i  is quite arbitrary. It can be location, size, age, sex, color, 
condition, or any other property. For each property we wish to track, we specify 
a separate matrix: K, K', ... Furthermore, we may have a different definition of 
"interaction" for each property. For example,fltrttering (behavior 1) of a butterfly 
may attract (behavior 2) a distant predator, but at close range it is found from the 
butterfly's coZoring (property 1) that it is d i s t a s t e f d  (property 2). The different 
matrices K, K' ... will in general enter the dynamical equations differently. 
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V. LUMPED MEASURES OF THE KNOWLEDGE 

Each matrix element K j  represents what one individual knows about one 
other individual. Therefore, each row in the matrix K represents what one 
individual knows about every other individual, andl each column represents 
what every other individual knows about one individual. The principal diagonal 
represents what each individual knows about itself (always =l). 

Matrix norms 
The sum of elements in a row, called the row-submatrix norm, represents the 

total knowledge of all other individuals held by individual { i} : 

The sum of elements in a column (called the column-submatrix norm) 
represents the total knowledge of individual {i} held by all other individuals: 

The sum of all matrix elements, called the norm, is the total knowledge in the 
population held by all individuals of all other individuals: 

K = Ci K~ = Z& K~~ 

This quantity is conveniently normalized to unity: 

k=K/@ ~ 

Alternatively, we can remove the self-knowledge N (= number of individuals 
in the population) and normalize the total pairwise knowledge to unity: 

k, = [K - N]/[N* - N]. 

This quantity is zero if there is no pairwise knowledge (Ku=Fd), and 1 if there 
is complete pairwise knowledge (Ku=l). 
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Eigenvalues and eigenvectors 
If all the elements of K are all real and positive, the matrix can be 

diagonalized by a similarity transformation 

Furthermore, if K is real and symmetric, all eigenvalues ~i will be real (Horn 
and Johnson, 1985). Therefore, to the extent that K is not symmetric, we might 
expect to see imaginary components of the eigenvalues. Conversely, we might 
take the presence of imaginary components of the eigenvalues as indication of 
the asymmetry of K .  We would say that the appearance of complex eigenvalues 
indicates that {i} knows more (or less) about {j} than {j} knows about { i} . 

Associated with each eigenvalue ~i is an eigenvector Si that satisfies 

If K is real and symmetric, all components of the eigenvectors will be real. 
Again, to the extent that K is asymmetric, we will have imaginary components in 
the eigenvectors. 

The eigenvectors S i represent pseudo-individuals that have the peculiar 
property of knowing nothing about any other pseudo-individual. This is obvious 
from the fact that the transformed matrix is diagonal, i.e., the off-diagonal 
elements K ij are zero. The rather strange circumstance of being able to associate 
individuals into noninteracting groups will be mentioned again when we discuss 
dynamics of populations with knowledge. 
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VI. INTRODUCING KNOWLEDGE INTO THE DYNAMICS 

Having defined the matrix K, we are ready to use it to modify a dynamical 
system described by a state vector X .  We begin by enunciating a dynamical 
principle that will have wide, albeit not universal, applicability: 

Given a population described by a dynamical model in which 
interactions between individuals are specifield, the effects of 

pairwise knowledge are included by weighting the strengths of the 
interactions by the magnitudes of their pairwise knowledge. 

By interactions, we mean potentials, forces, or any other quantity that 
represents a strength of coupling between pairs of individuals. The choice of 
simple weighting of the interactions is in the same spirit as the relationship we 
defined between K and p: it is the simplest nontrivial such relationship we can 
imagine. The introduction of K into the dynamics can be considered either a 
weakening of existing interactions ( K i j 4  ), or the introduction of new interactions 
( K i j S ) .  

The introduction of K into the dynamics will have two profound effects: 

(1) K will break the symmetry between the interacting pairs; 
(2) K will alter the relative strengths of the interactions. 

Thus, {i} will experience an effect due to {j} that is not, in general, equal to 
the effect on { j } due to { i} . Neither effect will be thie same as in the original 
dynamical system. 

With the principle stated above, much of the body of analysis that stems from 
classical dynamics is amenable to modification to include the effects of pairwise 
knowledge. In the remainder of this section, we give several examples of the 
application of this principle to general categories of systems. We will first show 
the original model equations, and then modify them according to the principle. 

c 
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Hamiltonian systems 
Many dynamical systems can be described with a Hamiltonian 

N N N  

1 i jti 
N N N  

The term V i  represents the potential energy between {i} and { j } . The force 
experienced by {i} due to {j} with this Hamiltonian is 

F.. - - V.V.. 
IJ - 1 1J 

In accordance with the principle stated above, we write the modified 
Hamiltonian as 

N N N  
R’= C Ti + C C KijVij = T + (K-V) 

1 i jA 

where K*V is the Hadamard product (K*V)i, = Kd V;j . The modified force is 

For such systems, the simple prescription is to replace the potential matrix V by 
(K-V). In the limit of full knowledge, Ki= l ,  the dynamical equations return to 
their unmodified forms. Clearly, K provides a constraint on the evolution of the 
system; once the dynamical equation for K is specified, the collective behavior of 
the population can be determined. 
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Phase transitions and stability 
The interesting possibility of phase transitions in cognitive populations can be 

investigated by looking for singularities in the equation of state. Normally this is 
done in the limit Q->=J. The ”phases” are behavioral patterns, seen in the 
collective dynamics, so to distinguish them from conventional phase space, 
which is defined on the configuration (e.g.# coordinates and momenta), we refer 
to them as ”behaviors.” We might therefore encounter populations that suddenly 
shift from one behavior to another. A very good example is that of fish schooling 
[Huth and Wissel, 19921. At rest, fish mill about with uncorrelated random 
orientation. When a weak threat is perceived, the fish move away in a highly 
ordered, oriented structure. If the threat becomes stron;g, the school will split into 
two or more smaller schools. If the threat is very strong, the school will 
disintegrate, and the motion of individuals is again uncorrelated. Because these 
behaviors are triggered by the introduction of new knowledge in the population, 
these transitions might be called ”knowledge-driven behavioral transitions.” 
While the existence of these transitions in familiar populations is common 
knowledge, what we have presented in this paper is a procedure for 
quantitatively predicting them by modifying an existing dynamical model. 

Instability and chaotic behavior of complex systems are well-known [May, 
19751, and it is well-known that it takes very little complexity to produce the 
possibility of instability. We therefore expect to commonly see reversible and 
irreversible switching between emergent behaviors in cognitive populations, 
triggered by a change in the knowledge. For strong coupling, i.e., rapid 
knowledge exchange, we might expect to see chaotic behavior switching. An 
unstable system might become stable after introduction of small K ,  and then 
become unstable again for large K .  In general, we expect to be able to map 
regions of stability and instability, or any other general descriptor of behavior, as 
a function of K. For a population in which we track several types of knowledge, 
(K1 ... Kn), a plot of the regions of stability in the (Kn,K,) plane will provide a 
phase portrait of the emergent behavior as a function of these two quantities. 
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Multibody interactions 
While K relates pairs of individuals, it should be noted that the dynamics of 

complex objects can be far richer and more complex than allowed by pairwise 

there is an overlap ("collision") of four or more individuals. For example [Huth 
and Wissel, 19921, individual fish in schools are thought to interact strongly with 
4 to 6 nearest neighbors and negligibly with others. Such multibody effects are 
generally negligible in the physics of simple objects. Here, however, the objects 
are potentially complex, and we seek a simplified or effective description of their 
behavior. One class of dynamical equations that captures such multibody effects 
is that of polynomials: 

forces. For instance, we might have a system in which no action is taken unless 

The ith component of the nth term in this series is 

which may be considered to represent an n-body collision. By suitably defining 
the knowledge matrix K and inserting it multiplicatively, we can modify this 
term to weaken the effect of the collision: 

When the dynamical equation for K is specified, the complete system evolution 
can be determined. 
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Eigen-individuals 
The significance of eigenvectors of K was described above: they represent 

pseudo-individuals constructed from the individuals in such a way that the 
pseudo-individuals do not interact. This is only possible is the dynamical 
equations are linear in K .  Let cD(d/dt) be a n  arbitrary differential operator. The 
knowledge-modified dynamical equations are 

<D( d/dt) X= K *f(X,t) 

Now apply a constant matrix transformation M that diagonalizes K: 

cD(d/dt)M*X=M*K*M-l*M*f(X,t) 

Using S=M.f(X,t) and H=M*K*M-I (which is diagonal), we have 

@(d/dt)S=K*S 

of which the ith component is 

Thus, the equations separate; the eigen-individuals behave as if they had no 
knowledge of any other eigen-individual. 

We reiterate that this analysis is valid only for constant K. However, if the 
pseudo-individuals experience infrequent pairwise collisions (that change K), we 
can use this formalism, updating K at every collision, and computing its new 
eigen-individuals after each collision. The obvious advantage is that the 
separated equations will be simpler to solve, and may yield to analytic solution. 
Extrapolation to collision times could then be done analytically, resulting in great 
savings over numerical integration of the full coupled equations. 
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VII. NUMERICAL EXAMPLES 

In this section, we present several numerical experiments that illustrate the 
principles developed above for including the knowledge in a dynamical system. 
These examples are not meant to simulate real ecosystems. We examine several 
systems described by 2 N  variables {xi,yi}, i=l ... N. These variable can be 
considered Cartesian coordinates, which are conveniently plotted as trajectories 
on the (x,y) plane, thus exhibiting directly the emergent behavior, and its 
modification when the knowledge K is introduced. The fact that these point 
particles do not have sufficient internal structure to maintain and use a memory 
or perform cognition in anthropomorphic terms is immaterial to these examples. 

Complete Knowledge 
We first examine a population with complete knowledge. A generic system 

that serves this purpose is a population of point chasers described by the 
following equations of motion: 

where 

These equations produce the generic action of ptrvszrit and flight. Typically, the 
motion is unbounded; the individuals rush off to infinity, singly or in groups. 
We will arbitrarily enclose the individuals in a square or rectangular box and 
specify that individuals bounce elastically from the flat walls (we will find that 
clusters of individuals bounce inelastically with the wall). 

The equations of motion contain only pairwise interaction terms: there are no 
terms that resemble a single particle in an external potential, or terms that 
represent kinetic energy. Therefore, by the simple dynamical principle given 
above, we can introduce the mutual knowledge by simply multiplying the 
interactions by the knowledge matrix element Kd : 
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Individual {i} may be given complete correct knowledge of {j} by setting 
Ki=+l .  This condition causes individual { i j  to be repelled by individual {j} . Any 
initial population with all matrix elements K i  =+1 will quickly fly apart to 
infinity. In the confining box, the individuals rush to the corners and stay pinned 
there. 

Individual {i} may also be given complete incorrect knowledge of {j} by 
setting Kij=-l. This condition causes individual { i} to be attracted to individual 
{j}. Any initial population with all matrix elements Kij =-1 will quickly collapse 
to a compact cluster. In the limit of infinitesimal step size, this cluster has 
vanishing size, and is stationary. If the step size is finite, the cluster appears to 
"swarm," and wanders randomly within the box. 

More interesting behavior of the population occurs by having some pairs with 
Ki=+l and others with Ki=-l, which produces competition between attraction 
and avoidance. With two possible values of Ki ,  there will be two species of 
individuals in the population, and we arbitrarily define these as male (M) and 
female (F). Thus, every individual { i} will be either M or F, and the values of K i  
will be limited to Ki=fl (i#j) assigned arbitrarily for the four pairs (M,M), (M,F), 
(F,M), and (F,F). As always, hi=l .  

We now examine a specific population for which we define K as follows: 

Thus, males will be repelled by other males but will be attracted to females, 
while females will be attracted to both males and females. We would expect these 
relations to produce chase patterns of emergent behavior, and this is what we 
find. In a population of 1 male and 1 female (1M+ IF), the male pursues the 
female (who flees) (M,M and F,F interactions are not present). Since their speeds 

I are identical, the pair races around the available space,, bouncing from the walls, 
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dashing off in new directions. The motion is precisely straight-line, except for the 
wall collisions. This behavior is shown in Figure 5(a), which is a time-exposure of 
the trajectory over a limited time interval. Note that although the (M,F) pair races 
around the box like a single compact object, its internal structure causes wall 
collisions violate Snell’s Law; the pair emerges from the wall at a different angle 
from which it approached. 

Populations with more individuals but having the values of I$ given above 
behave similarly. Fipures 5(b)-(f) show the behavior of populations of 2M+2F, 
1M+3F, 2M+4F, 3M+3F, and 3M+5F. In each of these, the entire population forms 
a compact cluster that chases around the box. But now the wall collisions are 
more disruptive to the cluster, and the cluster can spontaneously curve, kink, and 
form temporary local swarms. All this behavior is consistent with the fact that the 
individuals now feel forces from several individuals in (inverse) proportion to 
their separations, introducing enormous complexity into the motion. Although 
the motion is completely deterministic (there are no random elements anywhere), 
it is chaotic. 

Interestingly, all the systems shown in Fig. 5 have an even number of 
individuals. Experimentally we found that populations with odd numbers of 
individuals very quickly froze into a static configuration. Even after disruption 
by heating, the population immediately refroze. The cause of this is unknown. 
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Incomplete Knowledge (Randomly Distributed) 
We now ask how this system would behave if the pairwise knowledge were 

less than complete, i.e., IKij IC1 We do this by replacing the off-diagonal 1’s in Kij 
by random numbers: 

Kij =+Olrandoml 1 
K- =- llrandoml0 ‘J 

This situation can be thought of as reducing the pairwise knowledge, i.e., 
weakening the pairwise interactions, while maintaining its sense. Both correct 
and incorrect knowledge are reduced, but we do not change incorrect knowledge 
into correct knowledge, and vice versa. 

Figure 6 shows a set of such experiments with the population of 2 males and 4 
females (2M+4F). Each panel records a short interval of the trajectories in a 
separate experiment. Each panel continues to evolve in similar patterns forever. 

Although the order of these panels in Fig. 6 is immaterial (they were all 
separate independent experiments), we have ordered the panels roughly 
according to similar behavior: 

Fig. 6(a) 
Fig. 6(b) 
Fig. 6(c)-(d) 
Fig. 6(e)-(j) 
Fig. 6(j)-(1) 

Same conditions as Fig. 5(d): full knowledge (Kij =+1) 
Increased cluster order, reduction of wall collision violence 
A single individual chasing a cluster, and vice-versa 
Quasi-random walking of clusters 
Asymptotically stable patterns 

Clearly, this system shows a wide range of behavior. It was impossible to 
predict what kind of behavior a given panel would exhibit; we simply set the K 
matrix elements and ran the experiment. Overall, there appears to be a reduction 
of the straight parts of the trajectories and enhanced local random curving and 
swarming in comparison with the case of full knowledge (Fig. 5). This is 
consistent with the notion that straight patterns are generated by individuals 
moving together along the same line, clearly an activity that requires the 
individuals to know a lot about each other. When that knowledge is less than 
complete, the correlations in their motions are lower, and their trajectories 
become more chaotic. 
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Incomplete Knowledge (Nonrandom) 
What is the effect of individuals with less than full and correct knowledge in 

an otherwise fully knowledgeable population? To investigate this, we use the 
same system as in the previous two sections, but with the matrix elements Kij 
(igj) selected as follows: 

Thus, we will only vary the amount of attraction or repulsion of females for 

Figure 7 shows typical behaviors of a population of 2 males and 4 females. As 
in Figs. 5 and 6, each panel is a short time-exposure taken from a separate 
experiment. Now, however, each panel is associated with a specific value of 
Kij (F,F), hence the sequence is relevant. 

In general, we found that the population forms a more-or-less compact cluster 
that moves around the box with characteristic behavior. We describe these 
behaviors first in some detail, then in more general terms, attempting to discern 
patterns and sensitivities. (Arbitrarily we extended the range of K i  (F,F)<- 1 .O. 
While this violates the definition of IKijISl, all it means in this case is that there 
could have been a multiplicative constant in the equations of motion. Only the 
product of Kij and that constant enters the equations.). 

other females. 

-1.27 

-1.2 
-1.10 

-1.05...-1.03 

-1.01 
-1.00 

Chaotic wandering within the box. Infrequently, the 
cluster moved coherently in a circular pattern, but 
eventually broke away and continued chaotic wandering. 
All individuals spinning in a circle as a rigid body. 
Metastable rigid circular rotating pattern, which 
eventually broke away, just as it did for the -1.27 case. 
Arcing chains, attempting to form limit circles but never 
succeeding. 
Nearly linear trainlike motion. The legs have kinks. 
Nearly linear trainlike motion, bouncing violently against 
the wall. Bounces resulted in temporary disruption. 
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-0.98.. .-0.95 

-0.9 
-0 3.. .-0.6 

-0.5 
-0.4 

-0.3...+0.1 
+0.2...+0.4 
+0.6 

+0.8...+0.97 

+1 .o 

Kinked straight trainlike motion. Infrequently stops to 
form a long-lived linear pattern. 
Fixed stable linear pattern, achieved quickly. 
Chaotic wandering. After very long times, these 
sometimes formed fixed, stable linear patterns. 
Fixed stable linear pattern. 
Chaotic wandering. This pattern also probably ended in a 
fixed stable linear pattern. 
Stable compact rotating circular pattern. 
Chaotic wandering. 
Spontaneously separated into subclusters that wandered 
chaotically. The composition (e.g., 2 rnales +1 female) of 
these clusters changed intermittently. 
Clusters increasingly maintained fixed compositions, and 
followed independent trajectories. 
Population was divided into 3 (male,female) pairs that 
wandered chaotically and independently. 

Thus, we find several general asymptotic emergent behaviors, in rough order 
of increasing Kij(female,female): 

< -1.20 Rotation Circular limit cycles 
-1.2...-1 .o Pursuit Arcing, segmented, and linear trains 
-1 .O...-0.8 Stasis Fixed linear patterns 
-0.8.. .+0.2 Stasis Fixed circular patteirns 
+0.2...0.95 Branching Separate M,F branched patterns 
> +0.95 Snaking Separate M,F sinuoiis trains 

A very striking aspect of these experiments is the great sensitivity of the 
behaviors to small changes in Kij(F,F) (note especially the region around -1.00). 
We have done other experiments in which a change of 0.001 in this quantity was 
enough to produce qualitatively different behavior. 

It is interesting that the inventory of emergent behaviors obtained by 
systematically varying Kg(F,F) is riches than that obiained by selecting all K,j 

randomly (Fig. 6). We conjecture that unusual emergent behavior is produced by 
a matrix K that is far from some "equilibrium" or "balance," and that random 
matrices are closer to that equilibrium or balance. 
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Intermittancy due to Incorrect Knowledge 
Populations evolving with complicated dynamics have the potential for 

undergoing "phase," i.e., behavioral, transitions. To investigate this possibility in 
the context of mutual knowledge, consider a population of point vortices 
described by a Hamiltonian (Kunin, et al., 1992): 

where {%,yi ) are the canonical coordinates and momenta, respectively. From H 
we find the Hamiltonian equations of motion: 

Each term in H represents the interaction of one vortex with other vortices. H 

We now introduce the knowledge K into the dynamics. We can easily write 
produces circulating motions in which the vortices orbit around each other. 

the modified Hamiltonian as 

which leads to the modified equations of motion (we use the same symbols xi ,y;) 

For K;j=l, the vortices have full and correct knowledge of each other. Typical 
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behavior of such a population is shown in Figure 8(a1), in which 5 vortices are 
confined within a square box. After a rather lengthy transient, the system 
achieves a rather steady pattern that rotates like a solid body. Anticipating the 
next paragraph, we say that the vortices are interacting with ~ 

For IKijl<l, we have ”less than full knowledge,’’ and the emergent behavior of 
the population will be different. If K i d  for some pairs { i j } ,  we would say that 
those pairs have ”incorrect knowledge” of each other. 

Figure 8(b) shows what happens if we modify Kg to introduce some incorrect 
knowledge. As in previous cases, we assume the population has some males (M) 
and some females (F). For these experiments, we assumed a population of 
(3M+2F). The matrix elements were set to: 

- 

Thus, males have fully correct knowledge of all other individuals, and 
females have fully correct knowledge of other females, but females have fully 
incorrect knowledge of males. The motion of males in this population will 
therefore tend to be as expected (rotating around as ai rigid body), but females 
will tend to move oppositely when interacting with these males. In some sense 
this is similar to the population of chasers described above: the females run from 
the males, while the males chase the females. 

The result is a surprisingly rich variety of new emergent behavior (Fig. 8(b)). 
We find that the population switches irregularly bet ween chaotic wandering, 
jumbled piling against the wall, counter-rotating roughly concentric rings, and 
stable well-separated counter-circulating loops. The intermittancy of this system 
and the slow switching between attractors is a familiar expression of a system 
that is driven into a nonlinear regime, but not so far that it is completely chaotic. 

Of course, this example is so simple that: it is unnecessary to invoke cognitive 
ability to produce the modified emergent behavior. The point here was merely to 
illustrate the process of introducing knowledge into the dynamics. In a more 
complicated system, for instance a population of small robots, the advantage of 
introducing K is tlhat it lumps considerable comp:iexity into a few simple 
parameters which reasonably simulate reality. On the other hand, for more 
complicated individuals, the dynamical equations themselves may be very 
difficult to write. 

Page 26 



Metaindividuals and metapopulations 
A collection of individuals that in some way acts as a unit can be called a 

metaindividual. So long as the collection maintains some integrity and relative 
constancy of structure, it can exhibit its own characteristic behavior. Other 
individuals in the population may form into metaindividuals and behave in 
similar, or different, ways. The collection of metaindividuals constitutes a 
metapopulation. [Gilpin and Hanski, 19911. In population biology, 
metapopulation dynamics is vigorously developed and debated, driven by the 
fact that many ecosystems in Nature appear to function as metapopulations. 

Within the present paradigm of knowledge-modified dynamics, we have 
found numerous examples of systems that behave like metapopulations. An 
example is the population of male and female point vortices. Under certain 
conditions, the { M} and { F} subpopulations separate for long periods and move 
about the available space relatively autonomously, i.e., as metaindividuals.. 
Infrequently there is a collision of the metaindividuals, perhaps resulting in total 
disruption of the population. 

Figure - 9 shows a time sequence observed with a population of 2M and 2F 
vortices. The equations of motion are the same as in the previous section. The Kij 

matrix elements were set to: 

The population spontaneously separated in to two ring-like metaindividuals, 
one containing the 2M vortices, the other containing the 2F vortices. In each ring, 
the vortices circulated continuously, 2M clockwise, 2F counterclockwise. The 2F 
ring advanced very slowly on the 2M ring in the corner. Suddenly, the 2F ring 
extended a filament toward the 2M ring, initiating a major disruption of both 
rings. The 2M ring threw the 2F individuals backward, arching them high and 
back toward the wall, where eventually they reformed the 2F ring. Then the 
process repeated. 
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Knowledge-Induced Chaos 
In some systems, the increase of knowledge between individuals has the 

effect of more tightly coupling their relative motion, hence increasing the order of 
the emergent behavior. Can the reverse occur, namely the reduction of order by 
knowledge increase? We would expect this to be possible, since increasing the 
number of degrees of freedom often leads to greater complexity, and even chaos. 
To investigate this process, we examine a population of predators and prey. 

The Lotka-Volterra equations for a population sf N prey species and M 
predator species are (Murray, 1993; Goel, et al., 1971): 

where (xi,yi) are the number of (prey,predator) individuals, respectively. The 
coefficient q represents prey growth rate, ci represents predator death rate, and 
bij and dij describe the predation severity. In principle, these coefficients could be 
derived from a detailed microscopic model. These equations do not derive from a 
Hamiltonian. 

In accordance with the general principle for introducing the effects of 
knowledge into the model equations, we modify those parts of the dynamical 
equations that represent interactions: 

Note that K, K represent two different kinds of knowledge. The matrices K , K  
might evolve in time according to some externally specified rule or dynamics, or 
they might be strictly function of the populations (x;,yi). In general, K#K. For 
numerical simplicity we will set ai=bij=ci=dd=l, and K=K' Furthermore, we will 
take N = M ,  so that we have a population of N pseudo-individuals, each 
represented by the coordinates (xi,yi). 
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We examine a population of N=4 pseudo-individuals, divided into two 
subpopulations: 

mouse/hawk 
rabbit/fox 

i=l x=mouse y=hawk 

i=3 x=antelope y=tiger 
i=4 x=giraffe v=lion 

i=2 x=rabbit y=fox 

mouse/ rabbit/ antelope/ giraffe/ 
hawk fox tiger lion 

+1 -1 +k +k 
-1 +1 1 +k +k 

giraffe/lion I -k -k 
-k I +1 +I I -k antelopekiger 

+1 +I 

These relations mean that the mouse/hawk and rabbit/fox tend to be found 
together (-l), and the antelope/tiger and giraffe /lion tend to stay apart (+l). For 
k=O, the subpopulations do not interact. That is, the tiger and lion would not 
prey on the mouse and rabbit, and the hawk and fox would not prey on the 
antelope and giraffe. The cross relation K,j=-k will simulate the effect of cross 
predation (e.g., a fox preying on giraffe). The corresponding cross relation Kij=+k 
will simulate the effect of protection (e.g., the lion protecting the mouse). We take 
the magnitudes of these various effects to be the same (k) purely for simplicity in 
this example; we want to lump all these processes into a single parameter. 

The behavior of this system is shown in Figure - 10. It is well-known that the 
Lottka-Volterra equations are unstable (Hoppensteadt, 1982). We find this 
immediately for k=O as shown in Fig. S(a)-(d). - In Fig. &)(a), - all 4 predator-prey 
pairs very quickly approach the same familiar limit cycle that appears to be 
stable. However, at  very long time, the 4 cycles separate, 3 shrinking toward the 
origin (which is in the upper left-hand corner), while the fourth grows away from 
the origin. In an unbounded domain, this cycle would grow without limit. In the 
present simulation, the system is confined within a box, and the cycle jams into 
the corner, eventually approaching a limit cycle (Fig. lO(d)). - This system is 
stabilized by the box. 
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Now we change k from 0 to 0.1 (Fig. lO(e)). - The stability is disrupted, and the 
limit cycles are broadened into chaotic attractors. Figures s ( f ) - (h)  show how 
increasing k to 0.2, 0.4, and 0.6, respectively, increases the disruption of the 
attractors. The attractors grow in size and become asymmetric as k increases. The 
motion of the individuals, representing numbers of each species, vary more and 
more chaotically as k increases. Finally, at k=0.7, the entire system collapses into 
two points at opposite corners. This represents populations that are essentially all 
predators or all prey, but not both. 

Apparently what happened in this example was that the increased predation 
of the (hawk,fox) subpopulation on the (antelope,gira ffe) subpopulation drove 
the latter to small numbers. Similarly, the increased protection of the (tiger,lion) 
subpopulation of the (mouse,rabbit) subpopulation drove the latter to high 
numbers. Independent of the initial numbers of various species, the final 
population (with k20.7) is mostly (mouse,rabbit,tiger,,lion), with practically no 
(hawk,fox,antelope,giraffe). 

The point of this experiment was to show that increasing a quantity 
associated with knowledge can drive a stable system into instability and chaos. It 
is not suggested that this example is in any way a reasonable model for a real 
ecosystem. The point of this example is to illustrate the kinds of processes that 
arise by including a quantity associated with knowledge into a population. 

In previous examples (vortices, pursuit and flight), the knowledge K entered 
the dynamical equations multiplicatively. 'This allowed us to use IKi 121 , which 
just implies a scaling of an overall coupling. In this example, the functional form 
is more complicated. Hence, the behavior is nontrivially sensitive to the special 
cases a;=bi=ci=dij=l and K=K' To do this ]properly, we would first specify the 
physical model withhout the knowledge K ,  then insert K into the terms 
representing interactions,. maintaining the requirement that IKij 151 . 

- 
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VIII. RELATION TO OTHER WORK 

In knowledge engineering (Harmon and King, 1985), a piece of knowledge is 
accompanied by a confidence factor that is the probability that the knowledge is 
correct. The matrix element K i  can be identified as essentially this confidence 
factor. What we have added in this work is the postulate that the matrix K has a 
dynamics of its own, and can therefore be considered a dynamical quantity. 

Many workers are producing surprisingly realistic simulations of collective 
behavior of real animals. Typical is the work of Huth and Wissel (1992) on fish 
schools and Millonas (1992) on ant colonies. Phrasing such simulations in terms 
of pairwise knowledge could be useful. However, this approach is relevant only 
if the individuals actually interact, which is not always the case in these 
simulations. 

This work is also closely related to ”agent-oriented programming” [Shoham, 
19931. Shoham defines an agent as an ”entity whose state is viewed as consisting 
of mental components such as beliefs, capabilities, choices, and commitments.” 
Multiple agents in a population interact to produce emergent behavior. Although 
these words sound far more general than the kind of object we imagine in this 
work, Shoham in fact describes them as being precisely defined, hence these 
words are merely symbols for relatively simple mathematical relationships. 

This work is very closely related to parallel distributed processing (PDP) 
models of cognition (McClelland and Rumelhart, 1989), which are built on a 
paradigm of activation of knowledge atoms and their assembly into context- 
sensitive schemata. The evolution of such systems forward in time is described 
by relations such as 

in which aj(t) represents the state of the jth knowledge atom, F is a transfer 
function, r is a threshold function, and W is a matrix of weights that are the 
strengths of connections between different atoms. The linear limit of this relation 
(on the right) emphasizes that the internal knowledge in the system is entirely 
contained in the weight matrix W. Our knowledge matrix K corresponds to W. 

Additional similarity to the PDP paradigm is found in harmony theory 
(Smolensky, 1989). A function H (”harmony”) is defined that is a quantitative 
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measure of the self-consistency of a possible state of th.e system. The probability 
p that the system is actually in a particular state described by H is 

where T is a “computational temperature’’ that must be obtained from more 
fundamental theory, or else treated as a phenomenological parameter. Thus, we 
find similarity between the PDP expression pj(t> := pj(0) exp(Hjm) for the 
probability of {j} being in a particular state, and our expression Pij(t) = Pij(0) 
exp(Iij/c) for the probability of { i} knowing which state it is. 
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IX. CONCLUSIONS 

In this work we have proposed a dynamical principle for determining the 
behavior of a collection of objects that have internal structure. The principle 
derives from an analogy with biological populations in which each individual 
has partial knowledge of every other individual. The individual dynamics is then 
altered according to this knowledge, and the emergent collective behavior is 
likewise altered. 

In its simplest form, the prescription is to start from an existing dynamical 
model, and weight the strength of pairwise interactions by the relative amount of 
knowledge (normalized to the interval (-1,l)). The pairwise knowledge itself 
evolves according to a postulated dynamics, which may or may not depend on 
the system configuration. The formalism provides a means for exactly calculating 
the emergent collective behavior of the population. 

The principle is sufficiently broad that it provides a wide latitude of 
generalizations, some of which have analogs in Nature. The principle was 
deliberately constructed to provide a minimalist description of the emergent 
behavior. It will enable vastly larger systems to be modeled than would be 
possible by attempting to include all physical effects from first principles. It is 
most appropriate for relatively small populations of minimally cognitive 
individuals, e.g., a collection of interacting microprocessors or robots, but it can 
be applied to large populations as well. Because even a minute amount of 
knowledge is sufficient to produce extremely complex and interesting emergent 
behavior of the population, the procedure will easily simulate very complex 
collective behavior. The main motivation for this approach is calculational 
efficiency: a fast algorithm that produces approximately correct gross collective 
behavior could allow study of perturbations that will be useful. While the fast 
algorithm may miss on details, the differential effects of perturbations might be 
insensitive to such details. 

It is emphasized that the principle presented here is not so much a means to 
account for reality in Nature. Rather, it is a means to mathematically generate 
emergent behavior based on a physically reasonable model of the individual 
interaction, namely mutual knowledge. The approach should, however, be useful 
in the same sense of any model: to predict behavior and then look to see how 
well it did. In that regard, it may properly be called a model. 
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Figure 1 - Agent-mediated effective pairwise interactions. 
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Figure 2 - A connection diagram representation of the mutual 
knowledge in a population of 10 individuals. The 
thickness of the lines represents how much each 
individual knows about other individuals. The agents 
that produce this knowledge are not specified. The 
positions of the individuals are arbitrary, but they can 
easily represent real spatial positions of the individuals. 
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Figure 3 - Correspondence of categories of know ledge with the 
probability of correctly identifying the state of an 
individual. The quantity pr is the randlorn probability. For 
individuals that can be in any of G discrete states, pr = 
1/G. 
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Figure 4 - Functional relationship between the probability pij that {i} 
can correctly identify the state of { j }, and the pairwise 
knowledge K j  .. G is the number of states accessible to {j}. 
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Figure 5 - Behavior of several populations for fully correct 
knowledge between pairs of males and fully incorrect 
knowledge for all other pairs. (a) lM+lF; (b) 2M+2F; (c) 
1M+3F; (d) 2M+4F; (e) 3Mt-3F; ( f )  3M+5F. The behavior is 
essentially chasing around the box, with inelastic wall 
collisions. 

I 
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Figure 6 - Motions of 2 male and 4 female individuals in a box. 
(a) Complete knowledge. 
(b)-(1) Randomly incomplete knowledge. 

For each panel, the mutual knowledge I$. was set . 

continued in the same pattern forever; unlike the vortex 
system of Fig. 4, it did not switch between several quasi- 
stationary states. In (c) a single individual pursued the 
cluster of 5, whereas in (d), the cluster of 5 pursues a 
single individual. 

randomly within (0,l). The motion in eac A panel 
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Figure 6 (con’t) - In (j) the pattern achieved complete stability; the 
pattern shows the approach to that final state. In (k) all 6 
individuals rotated stably around a single point, 
presenting an unchanging time-integrated pattern. In (1) . 
the 6 individuals immediately formed a fixed cluster. 
When dispersed, the cluster immediately reformed into a 
new fixed pattern. 

Page 42 



Figure 7 - Motions of 2M and 4F point chasers in a box. For each 
panel, the mutual knowledge was &j =1 for (M,M) pairs, 
Ki=-l  for (M,F) and (F,M) pairs. For the 9 panels above, 
the values of &j for (F,F) pairs were: 

-1.27 -1.05 -1.00 
-1.20 -1.08 -0.98 
-1.10 -1.01 -0.95 
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Figure 7 - (con’t) For the 9 panels above, the values of K i  for (F,F) 
pairs were: 

-0.90 -0.60 -0.30 
-0.80 -0.50 -0.10 
-0.70 -0.40 0.00 
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.~ 
Correct Knowledge 

Incorrect Knowledge 

Figure 8 - Motions of 3M+2F vortices confined in a box. 
(a) Correct knowledge, using the unmodified 

Hamiltonian. The vortices rotate uniformly continuously 
counterclockwise within the box. 

(b) Incorrect knowledge, using the modified 
Hamiltonian. The motion switches intermitantly between 
chaotic wandering, jumbled piling, counter-rotating 
rings, and well-separated counter-spinning rings. 

Page 46 

, 



....I.. 

Figure 9 - Cyclic motion of 2M+2F vortices confined in a box (top to bottom). The 2M 
vortices are in the right ring stabilized in the corner, and the 2F vortices are in the left 
one. The 2F ring advances slowly on the 2M ring, extends a filament that disrupts both 
rings, and then reforms again to repeat the process. 
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(a) k=O (initial) (b) k=O (later) (c) k=O (later) 

r 

(d) k=O (final) (e) k=0.1 (f) k=0.2 

(9) k=0.4 (h) k=0.6 (i) k=0.7 
I 

Figure 10 - Effect of knowledge on a community of 4 predator and 4 prey species. 
The number of predators is plotted vertically (down) against the number of prey, 
with the origin in the upper left-hand corner. 

(a)-(c) k=O. Transient population limit cycles. 
(d) k=O. Wall-stabilized limit cycles. 
(e)-(@ k=0.1,0.2,0.4. Knowledge-induced chaos. 
(h) k=0.6. Instability induced by high knowledge. 
(i) k=0.7. Collapse to fixed points. 
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