Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the
R/V Thomas G. Thompson Cruise in the Pacific Ocean

(WOCE Section P10, October 5 – November 10, 1993)
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
CARBON DIOXIDE, HYDROGRAPHIC, AND CHEMICAL DATA OBTAINED
DURING THE R/V THOMAS G. THOMPSON CRUISE IN THE PACIFIC OCEAN
(WOCE SECTION P10, OCTOBER 5–NOVEMBER 10, 1993)

Contributed by
Christopher L. Sabine¹, Robert M. Key¹, and
Melinda Hall²,

¹Department of Geosciences
Princeton University
Princeton, New Jersey

²Department of Physical Oceanography
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts

Prepared by Alexander Kozyr³
Carbon Dioxide Information Analysis Center
Oak Ridge National Laboratory
Oak Ridge, Tennessee

³Energy, Environment, and Resources Center
The University of Tennessee
Knoxville, Tennessee

Environmental Sciences Division
Publication No. 4894

Date Published: August 1999

Prepared for the
Environmental Sciences Division
Office of Biological and Environmental Research
U.S. Department of Energy
Budget Activity Numbers KP 12 04 01 0 and KP 12 02 03 0

Prepared by the
Carbon Dioxide Information Analysis Center
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6335
managed by
LOCKHEED MARTIN ENERGY RESEARCH CORP.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-96OR22464
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xi</td>
</tr>
<tr>
<td>PART 1: OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>1. BACKGROUND INFORMATION</td>
<td>3</td>
</tr>
<tr>
<td>2. DESCRIPTION OF THE EXPEDITION</td>
<td>5</td>
</tr>
<tr>
<td>2.1 R/V Thomas G. Thompson Cruise Information</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Brief Cruise Summary</td>
<td>6</td>
</tr>
<tr>
<td>3. DESCRIPTION OF VARIABLES AND METHODS</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Hydrographic Measurements</td>
<td>8</td>
</tr>
<tr>
<td>3.2 TCO₂ Measurements</td>
<td>8</td>
</tr>
<tr>
<td>3.3 TALK Measurements</td>
<td>12</td>
</tr>
<tr>
<td>3.4 Underway xCO₂ Measurements</td>
<td>15</td>
</tr>
<tr>
<td>3.4.1 Methods for Measurement and Computation</td>
<td>15</td>
</tr>
<tr>
<td>3.4.2 Thermal Control</td>
<td>18</td>
</tr>
<tr>
<td>3.4.3 Component Calibration</td>
<td>18</td>
</tr>
<tr>
<td>3.4.4 Analysis Sequence</td>
<td>19</td>
</tr>
<tr>
<td>3.4.5 Data Calibration</td>
<td>19</td>
</tr>
<tr>
<td>3.4.6 Precision and Accuracy</td>
<td>21</td>
</tr>
<tr>
<td>3.4.7 Major Problems</td>
<td>21</td>
</tr>
<tr>
<td>3.4.8 Results</td>
<td>22</td>
</tr>
<tr>
<td>3.5 Radiocarbon Measurements</td>
<td>22</td>
</tr>
<tr>
<td>4. DATA CHECKS AND PROCESSING PERFORMED BY CDIAC</td>
<td>32</td>
</tr>
<tr>
<td>5. HOW TO OBTAIN THE DATA AND DOCUMENTATION</td>
<td>36</td>
</tr>
<tr>
<td>6. REFERENCES</td>
<td>37</td>
</tr>
</tbody>
</table>
PART 2: CONTENT AND FORMAT OF DATA FILES ..41

7. FILE DESCRIPTIONS ..43

7.1 ndp071.txt (File 1) ...44
7.2 stainv.for (File 2) ...44
7.3 p10dat.for (File 3) ...45
7.4 p10pco2a.for (File 4) ...46
7.5 p10pco2w.for (File 5) ...47
7.6 p10sta.txt (File 6) ...48
7.7 p10dat.txt (File 7) ...49
7.8 p10pco2a.txt (File 8) ...51
7.9 p10pco2w.txt (File 9) ...53

8. VERIFICATION OF DATA TRANSPORT ...55
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The cruise track during the R/V Thomas G. Thompson expedition in the Pacific Ocean along WOCE Section P10.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Sampling depths at all hydrographic stations occupied during the R/V Thomas G. Thompson expedition along WOCE Section P10</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Plot of certified reference materials (CRMs) and gas loop titration efficiency (GASCAL) values vs time during the R/V Thomas G. Thompson expedition along WOCE Section P10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Linear fit of the CRM TALK values as a function of time</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Plot of the nominally measured TALK vs TALK values calculated from the weight of sodium carbonate.</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Underway pCO₂ sampling locations along the cruise track for WOCE Section P10</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Princeton underway CO₂ system</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>A typical analysis sequence for Princeton system during measurements along WOCE Section P10</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Surface seawater (points) and atmospheric CO₂ concentrations (lines) vs time during WOCE Section P10</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>Δ¹⁴C results for P10 stations shown with 2σ error bars</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Δ¹⁴C as a function of silicate for P10 AMS samples</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>Section of Δ¹⁴C contours along latitude in silicate space for the 500–2500 m depth range</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Plot-section of Δ¹⁴C along WOCE Section P10</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Plot-section of Δ¹⁴C contoured in a potential density space</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>Nested profiles: total carbon dioxide (μmol/kg) vs pressure (dbar) for all stations of WOCE Section P10</td>
<td>33</td>
</tr>
<tr>
<td>16</td>
<td>Nested profiles: total alkalinity (μmol/kg) vs pressure (dbar) for all stations of WOCE Section P10</td>
<td>34</td>
</tr>
<tr>
<td>17</td>
<td>Property-property plots for all stations occupied during R/V Thomas G. Thompson cruise along WOCE Section P10</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF TABLES
ABSTRACT

This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO₂), total alkalinity (TALK), and radiocarbon (Δ¹⁴C), at hydrographic stations, as well as the underway partial pressure of CO₂ (pCO₂) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity, temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO₂, TALK, Δ¹⁴C, and underway pCO₂.

The TCO₂ was measured by coulometry using a Single-Operator Multiparameter Metabolic Analyzer (SOMMA). The overall precision and accuracy of the analyses was ±2 μmol/kg. Samples collected for TALK were measured by potentiometric titration; precision was ±4 μmol/kg. Small volume samples collected for ¹⁴C were sent to shore and measured by use of an accelerator mass spectrometry technique. Underway xCO₂ was measured by infrared photometry with a precision of ±1 μatm. The CO₂-related measurements aboard the R/V Thomas G. Thompson were supported by the U.S. Department of Energy.

P10 is the western most section of the U.S. WOCE survey of the North Pacific Ocean. It is important for understanding the dynamics of the far western equatorial Pacific. The results from this cruise can be used to infer the relative magnitude of various tracers to the North Pacific from the South China Sea and the Sea of Japan. WOCE Section P10 also provides a transect across the Kuroshio Current that can be used to better understand the northward transport of heat, salt, and other important ocean tracers.

The underway surface measurements show a small outgassing of CO₂ at the equator. The TCO₂, TALK, and radiocarbon values show profiles typical for the North Pacific. TALK correlates strongly with salinity. ¹⁴C correlates strongly with silicate. Deflection of the isolines of all parameters at the northern end of the cruise results from the Kuroshio Current.

The WOCE Section P10 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of four oceanographic data files, four FORTRAN 90 data-retrieval routine files, a documentation file, and this printed report, which describes the contents and format of all files as well as the procedures and methods used to obtain the data. Instructions on how to access the data are provided.

Keywords: carbon dioxide; coulometry; World Ocean Circulation Experiment; Pacific Ocean; hydrographic measurements; alkalinity; partial pressure of carbon dioxide; radiocarbon; carbon cycle
PART 1:

OVERVIEW
1. BACKGROUND INFORMATION

The World Ocean plays a dynamic role in the Earth’s climate: it captures heat from the sun, transports it, and releases it thousands of miles away. These oceanic-solar-atmospheric interactions affect winds, rainfall patterns, and temperatures on a global scale. The oceans also play a major role in global carbon-cycle processes. Carbon is unevenly distributed in the oceans because of complex circulation patterns and biogeochemical cycles. The oceans are estimated to hold 38,000 gigatons of carbon, 50 times more than that in the atmosphere and 20 times more than that in plants, animals, and soil. If only 2% of the carbon stored in the oceans were released, the level of atmospheric carbon dioxide (CO$_2$) would double. Every year, the amount of CO$_2$ exchanged across the sea surface is more than 15 times that produced by the burning of fossil fuels, deforestation, and other human activities (Williams 1990).

To better understand the ocean’s role in climate and climatic changes, several large experiments have been conducted, and others are under way. The largest oceanographic experiment ever attempted is the World Ocean Circulation Experiment (WOCE). A major component of the World Climate Research Program, WOCE brings together the expertise of scientists and technicians from more than 30 nations. In the United States, WOCE is supported by the federal government under the Global Change Research Program. The multiagency U.S. effort is led by the National Science Foundation and is supported by major contributions from the National Oceanic and Atmospheric Administration (NOAA), the U.S. Department of Energy (DOE), the Office of Naval Research, and the National Aeronautics and Space Administration. Although total carbon dioxide (TCO$_2$) is not an official WOCE measurement, a coordinated effort, supported in the United States by DOE, was made on WOCE cruises to measure the global distributions of TCO$_2$ and other carbon-related parameters [total alkalinity (TALK), partial pressure of CO$_2$ (pCO$_2$), and pH]. The goal of the DOE’s CO$_2$ survey includes estimation of the meridional transport of inorganic carbon in a manner analogous to the oceanic heat transport (Bryden and Hall 1980; Brewer et al. 1989; Roemmich and Wunsch 1985), evaluation of the exchange of CO$_2$ between the atmosphere and the ocean, preparation of a database suitable for carbon-cycle modeling, and subsequent assessment of anthropogenic CO$_2$ in the oceans. The final data set is expected to cover ~23,000 stations.

This report presents CO$_2$-related measurements obtained during the 37 days of the Research Vessel (R/V) *Thomas G. Thompson* expedition along the WOCE meridional Section P10 (Fig. 1).
Fig. 1. The cruise track during the R/V Thomas G. Thompson expedition in the Pacific Ocean along WOCE Section P10.
2. DESCRIPTION OF THE EXPEDITION

2.1 R/V Thomas G. Thompson Cruise Information

R/V Thomas G. Thompson cruise information follows:

<table>
<thead>
<tr>
<th>Ship name</th>
<th>Thomas G. Thompson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expedition code</td>
<td>3250TN026/1</td>
</tr>
<tr>
<td>WOCE Section</td>
<td>P10</td>
</tr>
<tr>
<td>Location</td>
<td>Suva, Fiji, to Yokohama, Japan</td>
</tr>
<tr>
<td>Dates</td>
<td>October 5–November 10, 1993</td>
</tr>
<tr>
<td>Chief Scientist</td>
<td>Melinda Hall (WHOI)</td>
</tr>
</tbody>
</table>

Parameters measured

<table>
<thead>
<tr>
<th>Parameters measured</th>
<th>Institution</th>
<th>Principal investigators</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTD,¹ salinity, oxygen</td>
<td>WHOI</td>
<td>M. Hall</td>
</tr>
<tr>
<td>Nutrients</td>
<td>OSU</td>
<td>L. Gordon</td>
</tr>
<tr>
<td>Chlorofluorocarbons (CFCs)</td>
<td>UW</td>
<td>M. Warner</td>
</tr>
<tr>
<td>Tritium and helium</td>
<td>WHOI</td>
<td>W. Jenkins</td>
</tr>
<tr>
<td>TCO₂, TALK, and underway xCO₂</td>
<td>PU</td>
<td>C. Sabine</td>
</tr>
<tr>
<td>Radiocarbon (¹⁴C)</td>
<td>PU</td>
<td>R. Key</td>
</tr>
<tr>
<td>Underway ADCP²</td>
<td>WHOI</td>
<td>T. Joyce</td>
</tr>
<tr>
<td>Lowered ADCP</td>
<td>UH</td>
<td>P. Hacker and E. Firing</td>
</tr>
</tbody>
</table>

Participating Institutions

- WHOI: Woods Hole Oceanographic Institution
- OSU: Oregon State University
- UW: University of Washington
- PU: Princeton University
- UH: University of Hawaii

¹Conductivity, temperature, and depth sensor.
²Acoustic Doppler current profiler.
2.2 Brief Cruise Summary

The objective of this cruise was to occupy a hydrographic section nominally along 149° E from Papua, New Guinea, to the shelf of Japan near Yokohama as part of the one-time WOCE Hydrographic Program (WHP) survey of the Pacific Ocean. A CTD with a 36-place, 10-L rosette was used on a total of 94 small-volume (SV) stations with water sampling for salinity, oxygen, nutrients, CFCs, tritium/helium, TALK, TCO$_2$, and 14C. The station spacing ranged from 5 to 40 nautical miles (nm), and most lowerings were made to within 10 m of the bottom. A lowered ADCP was attached to the rosette on 53 of the stations. At seven stations, additional casts were made for large-volume (LV) sampling of 14C in the deep and mid-depth waters. These LV casts were usually made with nine, 250-L Gerard barrels. Underway measurements along the cruise track included pCO$_2$, ADCP, digital echo-sounding, thermosalinograph, and meteorology.

The P10 cruise was the third in a series of three WHP one-time cruises aboard the R/V Thomas G. Thompson in 1993, following P17N and P14N. The ship departed Suva, Fiji, on November 5, 1993, and steamed northwest to the northern coastline of Papua, New Guinea, where the section began at the 200-m isobath. During the 7-day deadhead, three test stations were occupied (not included in the station numbering scheme) to shake down equipment and water-sampling methodology. The station track, designed in early planning documents for 145° E, was shifted eastward in an effort to depart the New Guinea coastline perpendicular to the bathymetry, then skirt the Mariana Ridge and Trough to the east, thus making the whole section in the East Mariana Basin, rather than in both that basin and the Philippine Basin farther west. Where bottom depths changed rapidly (near the coast and passing the Caroline Seamounts around 6–8° N), station spacing was dictated by topographic changes; within 3° of the Equator, spacing was every 15 min of latitude along the ship track (nominally 15 nm, but slightly more due to the track angle), stretching to 30 nm up to 10.5° N, then 40 nm from there to station 73 at 28.5° N. At that point the cruise track was going straight toward the Japan coast in order to cross the Kuroshio Current. The ADCP results indicated that this crossing was approximately perpendicular to the current. Over the northern dogleg, station spacing gradually decreased to resolve the strong front of the Kuroshio Current, and ultimately, to accommodate rapid topographic changes near the coast. Stations generally went to within 10 m of the bottom except over the Japan Trench and a few other stations where bottom depths exceed 6000 dbar. No stations were lost due to weather, and the ship arrived in Yokohama on November 10, 1993.

The general sampling strategy for the carbon work was to collect and analyze as many full profiles for TCO$_2$ and TALK as practical. The TCO$_2$ analysis was slightly faster than the TALK analysis and generally determined the frequency of sampling. Full profiles were collected at 32 of the 94 hydrographic stations occupied on this leg, with gaps of no more than two consecutive stations between profiles (Fig. 2). Duplicate samples were collected at every sample station from Niskins tripped in shallow, mid-depth, and deep waters for both TCO$_2$ and TALK to evaluate the quality and precision of sampling and analysis. All TCO$_2$ samples were analyzed at sea; however ~20% (220 samples) of the TALK samples were returned to Princeton University for shore-based analysis. To preserve the continuity of the profiles, all of the TALK samples at select stations were bottled for return to the laboratory. At least three additional replicate TALK samples were collected at these stations and analyzed at sea to ensure the compatibility of the two data sets [see further explanation in quality assurance/quality control (QA/QC) section]. In addition to the TCO$_2$ samples collected for on-board analysis, 40 samples were collected at 10 stations for shore-based TCO$_2$ analysis by vacuum extraction and manometry by Charles D. Keeling of Scripps Institute of Oceanography (SIO).
3. DESCRIPTION OF VARIABLES AND METHODS

3.1 Hydrographic Measurements

Two WHOI-modified EG&G Mk-III CTDs were provided for the cruise, although only one was used throughout the entire cruise (CTD #10). It was provided with an optional oxygen current and temperature channel and modified at WHOI to include a thermally isolated titanium pressure transducer, with a separately digitized pressure and temperature channel. The temperature and pressure calibrations were made at WHOI prior to and following the cruise. The CTD pressure, temperature, and conductivity data were processed and corrected according to laboratory calibrations. Pressure values are expected to be accurate to ±3 dbar; temperature values to ±0.002°C.

The water samples for the analysis of salinity, dissolved oxygen, and nutrients were collected from each of the 36 10-L bottles tripped on the upcast of each CTD station, in accordance with the recommendations of the WOCE Hydrographic Office. The vertical distribution of these samples was a compromise between the need to obtain deep samples for the calibration of the CTD conductivity and oxygen sensors and the requirement to define the characteristics of the water masses by the distributions of the various measured parameters.

Salinity samples were drawn into 120-mL Boston Round flint glass bottles with screw caps equipped with Poly-Seal® cones to prevent leakage and evaporation. After determining some problems with the quality of salinity measurements, it was decided to change the bottles. Beginning with station 59, samples for salinity measurements were collected in 200-mL square Kimax bottles, with polyethylene caps and inserts, owned by SIO, and a dramatic improvement was seen. Salinity was determined on the basis of electrical conductivity with a Guildline Autosal® salinometer.

Samples for dissolved oxygen were collected soon after the rosette sampler was brought on board and after CFC and helium samples were collected. Samples were titrated in the volume-calibrated iodine flasks with a 1-mL microburette, using whole-bottle automated Winkler titration. Estimated accuracy was 0.02 mL/L.

Nutrient samples were drawn from all CTD/rosette casts at stations 1 through 94 and at several test stations that preceded station 1. High-density polyethylene bottles of ~30-mL volume were used as sample containers, and these same bottles were positioned directly in the autosampler tray. These bottles were routinely rinsed at least three times with one-third to one-half of their volume of sample before filling and were thoroughly cleaned with 10% HCl every two or three days. The measurements were performed with an Alpkem Rapid Flow Analyzer, model 300. A Keithley data acquisition system was used in parallel with analog strip-chart recorders to acquire the absorbance data. The software used to process the nutrient data was developed at OSU. All of the reagent and standard materials were provided by OSU.

3.2 TCO₂ Measurements

During the R/V Thomas G. Thompson expedition along WOCE Section P10, 1072 TCO₂ samples were collected according to methods outlined in the DOE Handbook (DOE 1994) and stored in 300-mL borosilicate glass bottles in a 20°C water bath until the samples could be processed (maximum of 12 h). Samples were poisoned immediately after collection with 200 μL of saturated HgCl₂ solution to minimize biological activity prior to analysis. Samples were analyzed using a computer controlled single-operator multiparameter metabolic analyzer (SOMMA) system and UIC model 5011 coulometer following standard methods (Johnson et al. 1985, 1987; DOE 1994).
The SOMMA temperature sensors (National Semiconductor, Santa Clara, Calif., model LM34CH) were calibrated against a certified mercury thermometer and thermistors certified to 0.01°C (Thermometrics, Edison, N.J., part number CSP60BT103M). These sensors monitored the pipette, the gas sample loops, and the coulometer cell temperatures. The Digiquartz Transducer barometer (Paroscientific, Redmond, Wash., model 216B-101) was factory-calibrated prior to the cruise. The SOMMA sample delivery pipette volume was gravimetrically determined before the cruise to be 21.7758 ± 0.0016 mL using deionized water at a temperature of 20.32°C. Post-cruise calibration confirmed that the pipette volume remained constant throughout the cruise. Sample weight was calculated from the pipette volume, the measured sample temperature, and the bottle salinity value measured by the WHOI CTD group on all but three samples. The bottle salinity values from station 18, Niskins 25, 26, and 27, had values significantly different (>0.1) from the CTD salinity values and from other bottle salinity values from equivalent depths of the surrounding casts. This difference was large enough to result in an error in the calculated density that was greater than the sample precision; therefore, the sample density was recalculated for those three samples using the CTD salinity. Cylinders of compressed ultrahigh-purity nitrogen and 350-ppm CO₂ in air were used as the system’s carrier gas and headspace gas, respectively.

Titration cells were prepared with fresh cathode and anode solutions at the beginning of each cast. A system blank was determined for each cell by keeping track of the total number of counts accumulated by the coulometer’s voltage-to-frequency converter over a 10-min period. The counts used for determining the TCO₂ of a sample were then determined by subtracting the blank counts (average blank value in counts per minute times the length of the titration in minutes) from the total counts registered for that titration.

Two methods were used to evaluate the calibration of the TCO₂ system. The first method titrated a known volume of CO₂ gas to determine a system efficiency. This method involved filling one of two different-sized gas loops with primary standard-grade CO₂ gas (Scott Grade 5 CO₂, 99.999% pure). Based on the loop volume, pressure, and temperature, a known amount of CO₂ was introduced into the coulometer and titrated. Gas calibrations using both the large (1.5224 mL) and small (1.0586 mL) loops were run at the beginning and end of each titration cell. The second calibration method involved the titration of certified reference materials (CRMs) provided by Andrew Dickson of SIO at the beginning and end of every titration cell. The CRMs were analyzed in the same manner as a sample and the results compared to the certified value determined by vacuum extraction and manometry.

Although the gas loop and CRM calibration methods are very different (pure CO₂ gas vs seawater), the results can be directly compared by examining the titration efficiency (TE; coulometer counts per μmole of carbon titrated) determined for each sample. The TE for the CRM samples (TECRM) was determined from the blank corrected coulometer counts, sample volume (vol), sample density (ρ) (Millero and Poisson 1981), and certified CRM value (Tcr,m: 2031.65 μmol/kg):

\[
\text{TE}_{\text{CRM}} = \frac{\text{counts}}{(T_{\text{cr,m}} \times \text{vol} \times \rho)}.
\]

The TE for the gas loop calibrations was determined by dividing the blank corrected coulometer counts by the amount of CO₂ (μmoles) introduced to the coulometer. The amount of CO₂ was determined by dividing the loop volume by the molar volume of CO₂ (V_{CO₂}) at the measured loop temperature (T) and pressure (P) using an iterative approach:

\[
V_{\text{CO₂}} = \frac{RT}{P \times \left[1 + \frac{B(T)}{V_{\text{CO₂}}}\right]},
\]

where B(T) is the first virial coefficient for pure CO₂, and R is the gas constant.
Generally, the gas loop calibration is very reliable and accurate for SOMMA system calibrations (Johnson et al. 1987); however, a plot of the CRM and gas loop TE values shows that during the first half of the cruise, the gas loop efficiency was lower than the TE_{CRM} values (Fig. 3). Because the loop calibration system was new and untested on this system, and there was no reason to think that the CRM values would not be stable over the length of the cruise, the TE_{CRM} values were deemed to be more representative of the system efficiency. The gas loop TE values determined near the end of the cruise were more consistent with the TE_{CRM} values. Despite post-cruise recalibration of the SOMMA at Brookhaven National Laboratory (BNL) and extensive conversations with Ken Johnson of BNL, the exact cause of the gas loop problem has not been determined.

Fig. 3. Plot of certified reference materials (CRMs) and gas loop titration efficiency (GASCAL) values vs time during R/V *Thomas G. Thompson* expedition along WOCE Section P10.

A small increase in efficiency was observed in the TE_{CRM} values during the cruise. The TE values used to calibrate the sample TCO_2 values, therefore, were determined by fitting the TE_{CRM} values with a linear regression as a function of time (Fig. 3). The TCO_2 of samples in μmol/kg was determined using the following equation:
TCO$_2$ = counts / (0.1763148 × day + 4746.161) × [1000 / (vol × ρ)] × 1.00067,

where counts are the blank corrected coulometer counts, day includes the fractional day determined from the titration time, vol is the “to deliver” volume of the pipette corrected for the thermal expansion of glass, ρ is the density of seawater, and 1.00067 corrects for the dilution of the sample by the addition of 200 µL of HgCl$_2$ to the 300-mL sample bottle.

The analytical precision of the TCO$_2$ analyses can be estimated from the standard deviation (SD) of the 83 CRM values analyzed throughout the cruise. The SD of the calibrated batch 15 CRM values was ±1.91 µmol/kg. The sample precision can be evaluated from the 70 sets of duplicate samples collected in shallow, mid-depth, and deep waters at every station. The average difference between duplicates was 0.16 ± 1.71 µmol/kg, suggesting that sample precision was not significantly different from the analytical precision of the CRMs. As a further check on the accuracy of the TCO$_2$ analyses, duplicate samples from the surface and the 3000-m Niskins were collected from 10 stations along the cruise track and returned to SIO for analysis by vacuum extraction and manometry in C. D. Keeling’s laboratory. Ten samples have been analyzed to date, giving a mean difference (shore – sea) of 0.64 ± 1.79 µmol/kg, which is not statistically different from zero (Table 1). Note that one sample was considered bad and was excluded from the calculation because it was more than three standard deviations from the mean. These replicates also further corroborate the use of the CRM calibration since the mean difference for the gas loop calibration values would have been 2.97 ± 2.49 µmol/kg.

Table 1. Comparison of shipboard TCO$_2$ analyses to shore-based TCO$_2$ analyses made by C. D. Keeling at SIO

<table>
<thead>
<tr>
<th>Station no.</th>
<th>Niskin no.</th>
<th>TCO$_2$ (PU) (µmol/kg)</th>
<th>TCO$_2$ (SIO) (µmol/kg)</th>
<th>ΔCO$_2$ (SIO–PU) (µmol/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3</td>
<td>2332.0</td>
<td>2332.2</td>
<td>0.2</td>
</tr>
<tr>
<td>27</td>
<td>36</td>
<td>1895.4</td>
<td>1894.6</td>
<td>-0.8</td>
</tr>
<tr>
<td>38</td>
<td>36</td>
<td>1857.6</td>
<td>1856.5</td>
<td>-1.1</td>
</tr>
<tr>
<td>47</td>
<td>36</td>
<td>1893.5</td>
<td>1897.2</td>
<td>3.7</td>
</tr>
<tr>
<td>47</td>
<td>14</td>
<td>2337.8</td>
<td>2336.3</td>
<td>-1.5</td>
</tr>
<tr>
<td>65</td>
<td>12</td>
<td>2330.0</td>
<td>2336.1</td>
<td>6.1</td>
</tr>
<tr>
<td>71</td>
<td>13</td>
<td>2336.9</td>
<td>2337.2</td>
<td>0.3</td>
</tr>
<tr>
<td>80</td>
<td>13</td>
<td>2344.9</td>
<td>2346.1</td>
<td>1.2</td>
</tr>
<tr>
<td>86</td>
<td>35</td>
<td>1946.6</td>
<td>1949.7</td>
<td>3.1</td>
</tr>
<tr>
<td>86</td>
<td>12</td>
<td>2343.3</td>
<td>2344.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Mean Δ1 0.64
SD1 1.79

1does not include sample from station no. 65, Niskin no. 12.
3.3 TALK Measurements

During the expedition, 1099 TALK samples were collected according to methods outlined in the DOE Handbook (DOE 1994) and stored in 250-mL borosilicate glass bottles until the samples could be processed. Samples were poisoned immediately after collection with 200 μL of a saturated solution of HgCl₂ in deionized water to minimize biological activity prior to analysis. A total of 879 samples were analyzed at sea, and the remaining 220 were returned to the laboratory for analysis. The samples returned for shore-based analysis were from six stations: 30, 41, 54, 71, 77, and 86.

Samples analyzed at sea were brought to 25°C in a water bath, then pumped into a water-jacketed, 100-cm³, closed titration cell with a peristaltic pump. The cell design is described in the DOE Handbook (DOE 1994). The acid titrant was made by adding concentrated HCl to a 0.5 molar NaCl solution to give a normality of approximately 0.2. The calibrated acid normality (0.195091 ± 0.000041 mol/kg solution) was determined immediately after the cruise by A. Dickson of SIO using the coulometric technique described by Millero et al. (1993). The titration system consisted of a personal computer, a Metrohm 665 Dosimat digital burette, an Orion 720A pH meter, and a Corning semi micro pH electrode. Using a program similar to those used by previous investigators (Bradshaw and Brewer 1988; Millero et al. 1993), the system automatically titrated the sample past the carbonic acid endpoint with electromotive force (emf) intervals of approximately 13 mV. The TALK was calculated from the full titration curve using the nonlinear least-squares approach described in the DOE Handbook (DOE 1994), with the exception that the effect of temperature on the dissociation constants was determined for every titration point based on the measured sample temperature. Sample weight was calculated from the cell volume, the measured sample temperature, and the bottle salinity value measured by the WHOI CTD group on all but three samples. The bottle salinity values from station 18, Niskins 25, 26, and 27, were significantly different (>0.1) from the CTD salinity values and from other bottle salinity values from equivalent depths for the surrounding casts. This difference was large enough to result in an error in the calculated density that was greater than the sample precision, therefore the sample density was recalculated for those three samples using the CTD salinity.

To evaluate the performance of the alkalinity system, CRMs were titrated between each set of samples from a station. Two titration cells were used to run the at-sea samples. The first cell was used for stations 1 to 33. This cell was replaced with a new cell before running the station 36 samples, because the CRM values titrated on first cell had a steady upward drift with time for the 8 days it was in use. The replacement cell gave a much more satisfactory performance and was used for the remainder of the cruise. Sodium carbonate standards were dried and stored in airtight vials following the procedures described in the DOE Handbook (DOE 1994). Sets of four solutions were made in precalibrated volumetric flasks using a 0.7 molar NaCl solution with nominal concentrations of 600, 1200, 2400, and 2800 μmol/kg. Four replicate titrations of each solution were made to generate a calibration curve for the cell. Fresh standards were prepared and titrated at the beginning of the cruise, before replacing the first alkalinity cell, after the replacement cell was in place, and at the end of the cruise.

The time-dependent increase in the first-cell TALK values was removed using a linear fit of the CRM TALK values as a function of time (Fig. 4). The mean TALK of the corrected CRM values was adjusted to match the mean of the second cell CRM values. The final calibration of all samples run at sea was then determined by fitting the sodium carbonate titration data as outlined in the DOE Handbook (DOE 1994). The fit of the nominally measured alkalinity vs the alkalinity calculated from the weight of sodium carbonate gave a slope of 0.987 ± 0.006 and an intercept of 12 ± 11 (Fig. 5). The final cell volume was
Figure 4. Linear fit of the CRM TALK values as a function of time.
Fig. 5. Plot of the nominally measured TALK vs TALK values calculated from the weight of sodium carbonate.
determined by dividing the nominal cell volume by the slope. Applying this correction resulted in a mean batch 15 CRM alkalinity value of 2207.2 ± 3.9 μmol/kg (N = 98) for the cruise. The mean difference for sample replicates run at sea was 0.5 ± 3.8 μmol/kg (N = 71).

The P10 alkalinity samples returned to the laboratory for analysis were titrated using the same methods described for the at-sea samples. However, since accurate analytical balances were available, the cell volume was determined by careful weighing of the titration cell both empty and full of deionized water at a known temperature. The sample weight was converted to a cell volume based on density. A CRM sample (batch 17) was titrated every working day that the P10 samples were titrated to confirm the stability of the titration cell. The mean value for CRMs titrated over this period (~35 days) was 2207.6 ± 3.5 μmol/kg (N = 40). The mean difference between duplicate P10 samples run in the lab was 3.8 ± 5.2 μmol/kg (N = 12), not quite as good as the samples run at sea but not significantly different from zero. The mean difference between the samples run in the laboratory and the replicates run at sea immediately after collection was 3.8 ± 4.0 μmol/kg indicating that the storage of the samples did not affect the TALK values.

3.4 Underway xCO₂ Measurements

The R/V Thomas G. Thompson departed Suva, Fiji, on October 5, 1993, for WOCE leg P10. C. Sabine started the Princeton underway pCO₂ system the following day and provided necessary maintenance until the system was shut down the day before entering Yokohama, Japan, on November 10, 1993. Major problems with the gas selection valve were encountered on the cruise, resulting in a gap in data collection between 14° and 29° N. On average, one set of surface water and atmospheric CO₂ mole fraction (xCO₂) measurements was collected by the Princeton underway system approximately every 5 min while the system was operating normally. The sample locations along the cruise track are shown in Fig. 6.

3.4.1 Methods for Measurement and Computation

The Princeton underway CO₂ system uses a rotating disk equilibrator design with an infrared detector that has been shown to provide stable, consistent results with minimal attention by the operator (Sabine and Key 1996, 1997). The equilibrator is a modified disk-stripper design that was found to be very efficient at removing radon from seawater (Schink et al. 1970). The components of the system are linked to a computer and sample analysis is fully automated. The primary advantages of this system are the rapid response time of the equilibrator and the low level of expertise necessary to maintain the system relative to a gas chromatographic detector design. The gain in equilibrator response time sacrifices simplicity relative to the shower-head equilibrator, since the disk equilibrator has moving parts in addition to the air-circulation pump present on all seagoing pCO₂ instruments. On the other hand, the disk equilibrator design is not sensitive to changes in water pressure from the bow pump.

Figure 7 shows the major components of the Princeton system. Uncontaminated water from the ship's bow pump flows through the lower half of a disk equilibrator at approximately 18 L/min. CO₂ in the water equilibrates with recirculated air in the top half of the chamber. Equilibrator air, air pumped from the ship's bow/stem (depending on wind direction), and four standard gases (reference, low, mid, and high) are plumbed into a computer-controlled gas-sampling valve that determines which gas is directed to the detector. The mole fraction of the sample gas is determined by a Li-Cor 6251 nondispersive dual-beam infrared detector. During
Fig. 6. Underway pCO$_2$ sampling locations along the cruise track for WOCE Section P10. The gap in the sampling track indicates the underway system problem that occurred during the cruise.
Fig. 7. Princeton underway CO₂ system.
calibration, the instrument measures the concentrations of four standards that have a range of CO₂ concentrations in air, normalizes the detector voltage to temperature and pressure, and fits the results with a third-order polynomial. A full description of the system is presented by Sabine and Key (1997) with a few minor differences as noted in the following sections.

3.4.2 Thermal Control

The system used on this cruise was a predecessor of the system described by Sabine and Key (1997) used during the WOCE Indian Ocean cruises. The primary physical difference between the systems was the lack of thermal control on the detector rack on the earlier system. Although normalizing the detector response to the measured temperature removed most of the short-term variability in the detector response to standards, the remaining variability was still correlated with detector temperature. This variability was removed in the calibration routine (see discussion in Sect. 3.4.3), but it was decided to minimize this complicating effect in later versions of the system by enclosing the detector and associated plumbing in a temperature-controlled box.

3.4.3 Component Calibration

The working standard gas concentrations were calibrated against primary CO₂ standards, provided by P. Tans (NOAA/CMDL), in the laboratory using the seagoing detector prior to the cruise. Working standards were a mixture of CO₂ in artificial air prepared by Scott Specialty Gases. Multiple measurements of the working standards (0.00, 282.51, 349.77, and 400.70 ppm CO₂) were made with the detector calibrated against the primary standards. Measurement precision was better than 0.1 ppm on all standards.

Equilibrator temperature was monitored by a Rosemont ultralinear platinum resistance thermometer (PRT). The PRT was calibrated in the laboratory against a National Institute of Standards and Technology (NIST) traceable mercury thermometer. Estimated accuracy was ±0.01°C on the ITS90 scale.

Temperature readings from the Li-Cor detector were not explicitly calibrated for this survey because the final results are only a function of the relative changes in temperature between the standard gases and the sample.

The sensor used to monitor the system pressure (Setra Systems Inc.) was factory-calibrated against NIST-traceable primary standards prior to the cruise. Estimated accuracy was ±0.05%.

All system inputs were read into the computer as voltages using a Keithly A/D board. Accuracy of the board’s readings was confirmed with a Fluke model 8840A 5-digit voltmeter prior to the cruise. The resolution of the readings was a function of the voltage range being measured, but in all cases was at least an order of magnitude smaller than the estimated precision of the measurement.

Both the sea surface temperature and salinity values were calibrated against the WOCE preliminary surface bottle values at each station. Although the exact trip time is not generally recorded in the WOCE “.SEA” files, the “.SUM” files do record the beginning and ending times of each cast. Since the Niskin bottles were tripped on the upcast, the surface bottle was tripped immediately before the rosette was brought aboard and the cast was completed. The end time for the cast was taken, therefore, as the trip time for the surface bottle at each station. The surface station data were then tied to the underway data by calculating the mean and median values of the underway data for the 15 min prior to the recorded cast end time. Although the ship was not underway while the cast was in progress, there was the potential
that differences between the underway temperature readings and the discrete samples could have been real in very high gradient regions. Stations where the mean and median values were greater than 0.01 units apart were flagged, therefore, as questionable and not considered in the calibration fits.

3.4.4 Analysis Sequence

The Princeton system normally operates automatically with a single microcomputer (80486 CPU) controlling sample selection, valve switching, and data logging. Figure 8 shows a typical record of detector voltages recorded for one full calibration and measurement cycle. The details of exactly how the system selects the standards and determines sample stability is described by Sabine and Key (1997). The primary difference between the operation of this version of the system and that described by Sabine and Key (1997) is the frequency at which the system sampled each gas. For this cruise, a full set of standards (reference, low, mid, and high standards) was analyzed every 3 h with a partial standard set (low, mid, and high standards) run every hour in-between full calibrations. An hourly calibration sequence was chosen to ensure that detector drift was captured, but this was found to be well in excess of what was necessary. The reference gas was analyzed only at 3 h intervals because the detector took a long time to stabilize with the 0-ppm CO₂ reference and the 0-ppm detector readings were very stable. After calibration, the system alternately collected six marine air and six equilibrator sample gases until it was time for another calibration.

3.4.5 Data Calibration

Listed below, in order of calculation, are the steps that were used to calibrate the results with the Princeton system.

1. Average the readings (four per calibration) for the reference gas and each standard gas for each calibration run.

2. Estimate the response for each gas as a function of time by calculating the set of linear regression lines that connect the estimated responses from the calibration runs. In other words, “connect the dots” generated by step 1 plotted as a function of time. Various smoothing curves could be used here, but this procedure yields the lowest uncertainty of any tried to date (possibly because of the short time scale correlation among the four results).

3. Based on the four sets (one set for each standard gas) of regression lines generated by step 2, calculate the response for each standard gas at the time each equilibrator gas or bow air sample was measured.

4. Use the results of step 3 with the detector response for the measurements to calculate the concentration of the unknown samples. Here it is assumed that the relationship between detector response and gas concentration follows a third-order polynomial; therefore, this step requires finding the real roots of a third-order polynomial for each unknown sample measurement.

The result obtained from these four steps is the xCO₂ of the measured dry gas. This value can be corrected to pCO₂ or fugacity of CO₂ (fCO₂) at in situ conditions. These
Fig. 8. A typical analysis sequence for the Princeton system during measurements along WOCE Section P10.
adjustments have been described in great detail in DOE Handbook (DOE 1994). The CO₂ concentrations reported in the final data tables were given at the measured equilibrator temperature (average 0.49 ± 0.1°C greater than sea surface temperature) and were corrected to in situ temperature using the relationship of Weiss et al. (1982). In order to calculate ΔxCO₂ between surface water and the atmosphere, the atmospheric results were interpolated to the times surface water measurements were made. A separate file with the measured atmospheric values is also provided.

3.4.6 Precision and Accuracy

The primary calibration method for the system is periodic analysis of gas standards using known CO₂ concentrations. The infrared detector response is slightly curvilinear (i.e., not straight) with respect to CO₂ concentration in the sample gas path. Additionally, the detector has been found to have a slow drift over a period of several hours. Frequent calibration against standards can give an estimate of the analytical precision; however, this technique has the potential of systematic error with respect to accuracy. There is currently no known rigorous statistical test to determine optimal instrumental settings, or, for that matter, even to estimate the expected uncertainty of the results; however, it was attempted to estimate the precision and accuracy of these results with the best available information.

One estimate of precision was obtained by looking at the standard deviation of repeated measurements of the gas standards. The mean of the standard deviations determined for this instrument was 0.007 V, which was approximately equivalent to 0.9 ppm CO₂. This can be interpreted as a crude estimate of the analytical precision if one assumes (1) that the precision obtained when analyzing sample gas is the same as for a standard and (2) that no additional uncertainty is incurred when interpolating calibration runs to the sampling time. This estimate assumes that no significant error was incurred in converting to in situ conditions. This assumption is reasonable with respect to precision, but not necessarily for accuracy. The primary correction to get xCO₂ at in situ conditions was the warming of the water as it passed through the ship and equilibrator. A 1-degree increase in temperature results in roughly a 4% or ~14 ppm change in xCO₂ (Takahashi et al. 1993; Copin-Montegut 1988; Weiss et al. 1982); therefore, both sea surface and equilibrator water temperatures must be known to an accuracy of ±0.05°C to calculate xCO₂ values accurate to ±1 ppm. A second estimate of accuracy can be obtained by comparison with other systems. No other pCO₂ systems were running on this cruise, but the Princeton system has given very consistent results with R. Weiss’s gas-chromatograph-based/shower-type system when the two systems were run in parallel (Sabine and Key 1997). It was estimated that the accuracy of this system was ±1 ppm.

3.4.7 Major Problems

Two days after the cruise began, the underway CO₂ system started to have problems with the Valco gas-sampling valve. Occasionally during position switching, the valve actuator would not stop, and the valve would continue to spin until the fuse blew or the power was switched off and back on again. By October 9 the problem had become more frequent. The valve was completely dismantled and cleaned. Valco technical support was contacted by phone. The problem was deduced to be in the Valco logic board, which could not be repaired at sea. Upon reassembly the valve seemed to work better. It was watched carefully and the spinning was corrected when necessary by switching the power to the valve off and on again. On the morning of October 14, the air flow in the bow air line had dropped substantially. The tubing was flushed with deionized water to remove any salt deposits in the line, and the valve
port was cleaned with a cotton-tipped swab. The pump head was also replaced on the air
cadet pump, and the flow returned to normal. On October 15, the Valco gas-sampling valve
was disassembled and cleaned because sample gas flow was very low. Flow rate was much
better after cleaning. On October 17 at 18:30 h, a problem was discovered with the drying tube
while the system was running a standardization. The Nafion® tubing had apparently pulled
out of the fitting. This problem could not have occurred too long before it was discovered
because the sample was contaminated with 0-ppm gas, which was giving very unusual
readings. The entire drying tube assembly was replaced, and the system was recalibrated. On
October 18, the Valco spinning problem was too severe for the automated sampling program.
The system was run using a program that required the operator to hit a key on the computer to
change valve positions. This way, if the valve started spinning, it could be fixed right away.

An attempt was made to run the system on the same schedule that the automated system was
programmed to run. On October 23 at 22:30, the water pump failed, and the equilibrator was
found drained. The system was switched to sample bow air while the water pump was
repaired. On October 25, the bow and equilibrator gas flow rates were very low. The Valco
was taken apart and cleaned. Upon reassembly, the actuator would do nothing but spin.
Many unsuccessful attempts were made to repair the problem. The system was shut down
until a solution could be found. On November 3, the ship’s engine room crew managed to
manufacture a handle that would allow the rotor to be manually rotated. The system was
started again and run using the manual program for the remainder of the cruise.

3.4.8 Results

Despite the many mechanical difficulties on this cruise, more than 11,600 surface
seawater and 4,000 marine air measurements covering more than 50 degrees of latitude in the
far western Pacific where collected. Figure 9 shows the surface water and atmospheric xCO₂
concentrations as a function of the day of the year on the cruise. It is clear that the surface
water CO₂ concentration can vary significantly over relatively short time (space) scales.
Values corrected to sea surface temperature ranged from a low of 314.8 ppm to a high of
389.9 ppm. Low xCO₂ values were observed at the beginning of the cruise (near Fiji) and at
the end of the cruise (near Japan). The highest xCO₂ values were observed near the equator,
crossed on day 289.

3.5 Radiocarbon Measurements

During the R/V Thomas G. Thompson expedition along WOCE Section P10, 588
accelerator mass spectrometry (AMS) Δ¹⁴C samples were collected at 38 stations. In addition
to the AMS samples, LV Gerard samples were also collected during this cruise. The LV
measurements will be published in a separate report.

Sampling of ¹⁴C during the cruise was carried out by R. Key of the Ocean Tracer
Laboratory at Princeton University. Sample extraction, δ¹³C analyses, and ¹⁴C analyses were
performed by the National Ocean Sciences AMS Facility (NOSAMS) at Woods Hole
Oceanographic Institution. Key collected the data from the originators, merged the files,
assigned quality control flags to the ¹⁴C results, and submitted the data files to the WOCE
office in April 1998.

All SV samples were collected from standard CTD/rosette casts into 500-mL glass bottles
fitted with high-quality ground-glass stoppers. The samples were poisoned with HgCl₂
Fig. 9. Surface seawater (points) and atmospheric CO₂ concentrations (lines) vs time during WOCE Section P10.
immediately after collection and were sent for extraction and analysis at NOSAMS after the cruise. Details of the extraction, counting, etc., are available from Key (1991), McNichol and Jones (1991), Gagnon and Jones (1993), and Cohen et al. (1994).

The $\Delta^{14}C$ values reported here were originally published in a NOSAMS data report (NOSAMS, March 13, 1998). That report included results that had not been through the WOCE quality control procedures.

All 588 of the AMS samples from this cruise have been measured and presented in this report. Replicate measurements were made on 21 water samples. These replicate analyses are tabulated in Table 2.

Table 2. Summary of Replicate Analyses

<table>
<thead>
<tr>
<th>Sta-cast-bottle</th>
<th>$\Delta^{14}C$</th>
<th>Error</th>
<th>Error-weighted mean<sup>a</sup></th>
<th>Uncertainty<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1-3</td>
<td>-209.4</td>
<td>2.8</td>
<td>-211.0</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>-212.6</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1-5</td>
<td>-187.3</td>
<td>2.7</td>
<td>-189.2</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>-193.5</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-1-29</td>
<td>90.8</td>
<td>6.0</td>
<td>89.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>88.7</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-3-18</td>
<td>-159.8</td>
<td>6.9</td>
<td>-155.2</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>-152.6</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-3-25</td>
<td>-52.8</td>
<td>4.5</td>
<td>-55.3</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>-56.5</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-3-27</td>
<td>70.2</td>
<td>5.3</td>
<td>71.5</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>72.4</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-1-24</td>
<td>-80.0</td>
<td>3.5</td>
<td>-79.8</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>-79.4</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-3-33</td>
<td>135.0</td>
<td>4.1</td>
<td>134.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>134.4</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-3-35</td>
<td>118.0</td>
<td>3.4</td>
<td>118.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>119.5</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68-1-30</td>
<td>117.2</td>
<td>4.6</td>
<td>117.0</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>116.7</td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-1-25</td>
<td>-126.5</td>
<td>3.1</td>
<td>-129.1</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>-132.3</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 shows the error-weighted mean and uncertainty for each set of replicates. Uncertainty is defined here as the larger of the standard deviation and the error-weighted standard deviation of the mean. For these replicates, the simple average of the tabulated uncertainties for the replicates is 4.0% (equal weight for each replicate set). This precision is typical for the time frame over which these samples were measured (February–October 1997). Note that the errors given for individual measurements in the final data report (with the exception of the replicates) include only counting errors and errors due to blanks and backgrounds. The uncertainty obtained for replicate analyses is an estimate of the true error that includes errors due to sample collection, sample degassing, etc. For a detailed discussion of this see Key (1996).

Figures 10–14 summarize the $\Delta^{14}C$ data collected on the P10 Section. Only $\Delta^{14}C$ measurements with a quality flag value of 2 (“good”) or 6 (“replicate”) are included in each figure. Figure 10 shows the $\Delta^{14}C$ values with 2σ error bars plotted as a function of pressure.
Fig. 10. $\Delta^{14}C$ results for P10 stations shown with 2σ error bars. Only measurements with quality control flag values of 2 or 6 are plotted.
Fig. 11. $\Delta^{14}C$ as a function of silicate for P10 AMS samples.
The straight line shows the relationship proposed by Broecker et al. 1995 ($\Delta^{14}C = -70$–Si with radiocarbon in $\%_{oo}$ and silicate in μmol/kg).
Fig. 12. Section of Δ^{14}C contours along latitude in silicate space for the 500–2500 m depth range. Note that for this section, "shallow" is toward the bottom.
The mid-depth $\Delta^{14}C$ minimum occurs around 2000 to 2400 m, but is weak in this data set relative to the eastern North Pacific. Measurements in the thermocline region fall into two distinct groups with the higher values being from the southern end of the section and the extreme northern end while the lower grouping is from the central portion (see Figs. 11 and 12).

Figure 11 shows the $\Delta^{14}C$ values plotted against silicate. The straight line shown in the figure is the least squares regression relationship derived by Broecker et al. (1995) on the basis of the GEOSECS global data set. According to their analysis, this line ($\Delta^{14}C = -70 - Si$) represents the relationship between naturally occurring radiocarbon and silicate for most of the ocean. Broecker et al. interpret deviations in $\Delta^{14}C$ above this line to be due to input of bomb-produced radiocarbon; however, they note that the interpretation can be problematic at high latitudes. Samples collected from shallower depths at these stations show an upward trend with decreasing silicate values reflecting the addition of bomb-produced ^{14}C. As in Fig. 10, two distinct trends are apparent. Here the upper grouping is from the northern end of the section and the lower from the southern end.

Another way to visualize the ^{14}C–silicate correlation is as a section. Figure 12 shows $\Delta^{14}C$ as contour lines in silicate-latitude space for samples having a potential density greater than 26.9, which corresponds to ~500 m. In this space, shallow waters are toward the bottom of the figure. The density cutoff was selected to eliminate those samples with a very large bomb-produced ^{14}C component. For this data set, Broecker’s hypothesis does not work very well. The $\Delta^{14}C$ isolines trend upward to the north, and the spacing between the isolines decreases northward, for contours that fall below the depth of bomb-radiocarbon contamination. The upward curvature of the isolines at the northern end of the section is due to the addition of bomb-produced radiocarbon via ventilation or due to an “anomalous” silicate signal (Talley and Joyce 1992).

Figures 13–14 show $\Delta^{14}C$ contoured along the section. Figure 13 is a normal section in latitude-depth space whereas Fig. 14 shows the same data set in potential density-latitude space. The depth section was gridded by means of LeTraon’s (1990) objective technique, and the density section was gridded using the “loess” methods described in Chambers et al. (1983), Chambers and Hastie (1991), Cleveland (1979), and Cleveland and Devlin (1988).

In Fig. 13, the primary structure of the isopleths is due to the presence of the Pacific North Equatorial Current which flows westward across the southern end of the section and the Japan current that flows northeastward across the far northern end of the section. Upwelling near the equator is not particularly evident in Fig. 13 but is the source of most of the structure seen in the isopleths in Fig. 14 in the low-latitude zone. The deep and bottom water AMS results are too sparse to contour.
Fig. 13. Plot-section of $\Delta^{14}C$ along WOCE Section P10. Most of the deep and bottom waters along this section were sampled with the LV technique. The few AMS samples collected below 1500 m were omitted from this section.
Fig. 14. Plot-section of $\Delta^{14}C$ contoured in a potential density space.
4. DATA CHECKS AND PROCESSING PERFORMED BY CDIAC

An important part of the NDP process at the Carbon Dioxide Information Analysis Center (CDIAC) involves the quality assurance (QA) of data before distribution. Data received at CDIAC are rarely in a condition that would permit immediate distribution, regardless of the source. To guarantee data of the highest possible quality, CDIAC conducts extensive QA reviews that involve examining the data for completeness, reasonableness, and accuracy. The QA process is a critical component in the value-added concept of supplying accurate, usable data for researchers.

The following information summarizes the data-processing and QA checks performed by CDIAC on the data obtained during the R/V Thomas G. Thompson cruise along WOCE Section PIO in the Pacific Ocean.

1. The final carbon-related data and radiocarbon measurements were provided to CDIAC by Chris Sabine and Bob Key of Princeton University. The final hydrographic and chemical measurements and the station information files were provided by the WOCE Hydrographic Program Office (WHPO) after quality evaluation. A FORTRAN 90 retrieval code was written and used to merge and reformat all data files.

2. To check for obvious outliers, all data were plotted by use of a PLOTNEST.C program written by Stewart C. Sutherland (Lamont-Doherty Earth Observatory). The program plots a series of nested profiles, using the station number as an offset; the first station is defined at the beginning, and subsequent stations are offset by a fixed interval (Figs. 15 and 16). Several outliers were identified and marked with the quality flags of “3” (questionable measurement) or “4” (bad measurement) (see File Descriptions in Part 2 of this documentation).

3. To identify “noisy” data and possible systematic, methodological errors, property-property plots for all parameters were generated (Fig. 17), carefully examined, and compared with plots from previous expeditions in the Pacific Ocean.

4. All variables were checked for values exceeding physical limits, such as sampling depth values that are greater than the given bottom depths.

5. Dates, times, and coordinates were checked for bogus values (e.g., values of MONTH < 1 or > 12; DAY < 1 or > 31; YEAR < or > 1993; TIME < 0000 or > 2400; LAT < –10.000 or > 40.000; and LONG < 140.000 or > 180.000).

6. Station locations (latitudes and longitudes) and sampling times were examined for consistency with maps and cruise information supplied by C. Sabine and R. Key of Princeton University.

7. The designation for missing values, given as –9.0 in the original files, was changed to –999.9.
WOCE Section P10
All stations
Profiles which exist in this Pressure (dbar) range are ordered on Station No.
Plotted parameter ranges from 1850 to 2400

Fig. 15. Nested profiles: total carbon dioxide (μmol/kg) vs pressure (dbar) for all stations of WOCE Section P10.
Fig. 16. Nested profiles: total alkalinity (μmol/kg) vs pressure (dbar) for all stations of WOCE Section P10.
Fig. 17. Property-property plots for all stations occupied during the R/V *Thomas G. Thompson* cruise along WOCE Section P10.
5. HOW TO OBTAIN THE DATA AND DOCUMENTATION

This database (NDP-071) is available free of charge from CDIAC. The data are available from CDIAC's anonymous file transfer protocol (FTP) area via the Internet. Please note: Your computer needs to have FTP software loaded on it (this is built in to most newer operating systems). Use the following commands to obtain the database.

```
>ftp cdiac.esd.ornl.gov or >ftp 128.219.24.36
Login: “anonymous” or “ftp”
Password: your e-mail address
ftp> cd pub/ndp071/
ftp> dir
ftp> mget (files)
ftp> quit
```

The complete documentation and data may also be obtained from the CDIAC oceanographic Web site at the following URL: http://cdiac.esd.ornl.gov/oceans/doc.html.

You may also order through CDIAC's online ordering system (http://cdiac.esd.ornl.gov/pns/how_order.html) or by contacting CDIAC directly to request the data on your choice of media.

For additional information, contact CDIAC.

Address: Carbon Dioxide Information Analysis Center
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6335
U.S.A.

Telephone: (423) 574-3645 (Voice)
(423) 574-2232 (Fax)

Electronic mail: cdiac@ornl.gov

Internet: http://cdiac.esd.ornl.gov/
6. REFERENCES

Williams, P. J. 1990. *Oceans, Carbon, and Climate Change*. Scientific Committee on Oceanic Research (SCOR), Halifax, Canada.
PART 2:

CONTENT AND FORMAT OF DATA FILES
7. FILE DESCRIPTIONS

This section describes the content and format of each of the nine files that comprise this NDP (see Table 3). Because CDIAC distributes the data set in several ways (e.g., via anonymous FTP and on floppy diskette), each of the nine files is referenced by both an ASCII file name, which is given in lower-case, bold-faced type (e.g., ndp071.txt) and a file number. The remainder of this section describes (or lists, where appropriate) the contents of each file.

<table>
<thead>
<tr>
<th>File number, name, and description</th>
<th>Logical records</th>
<th>File size in bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ndp071.txt:</td>
<td>1,908</td>
<td>123,028</td>
</tr>
<tr>
<td>a detailed description of the cruise network, the four FORTRAN 90 data-retrieval routines, and the four oceanographic data files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. stainv.for:</td>
<td>47</td>
<td>1,439</td>
</tr>
<tr>
<td>a FORTRAN 90 data-retrieval routine to read and print p10sta.txt (File 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. p10dat.for:</td>
<td>55</td>
<td>2,144</td>
</tr>
<tr>
<td>a FORTRAN 90 data-retrieval routine to read and print p10dat.txt (File 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. p10pco2a.for:</td>
<td>43</td>
<td>1,440</td>
</tr>
<tr>
<td>a FORTRAN 90 data-retrieval routine to read and print p10pco2a.txt (File 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. p10pco2w.for:</td>
<td>46</td>
<td>1,666</td>
</tr>
<tr>
<td>a FORTRAN 90 data-retrieval routine to read and print p10pco2w.txt (File 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. p10sta.txt:</td>
<td>104</td>
<td>8,372</td>
</tr>
<tr>
<td>a listing of the station locations, sampling dates, and sounding bottom depths for each of the 94 stations of WOCE Section P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. p10dat.txt:</td>
<td>2,833</td>
<td>475,105</td>
</tr>
<tr>
<td>hydrographic, carbon dioxide, and chemical data from 94 stations occupied on WOCE Section P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>File number, name, and description</td>
<td>Logical records</td>
<td>File size in bytes</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>8. p10pco2a.txt:</td>
<td>4,029</td>
<td>321,977</td>
</tr>
<tr>
<td>underway atmospheric measurements of pCO₂ along the cruise track of WOCE Section P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. p10pco2w.txt:</td>
<td>11,656</td>
<td>1,223,329</td>
</tr>
<tr>
<td>underway surface water measurements of pCO₂ along the cruise track of WOCE Section P10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20,721</td>
<td>2,158,500</td>
</tr>
</tbody>
</table>

7.1 ndp071.txt (File 1)

This file contains a detailed description of the data set, the four FORTRAN 90 data-retrieval routines, and the four oceanographic data files. It exists primarily for the benefit of individuals who acquire this database as machine-readable data files from CDIAC.

7.2 stainv.for (File 2)

This file contains a FORTRAN 90 data-retrieval routine to read and print **p10sta.txt** (File 6). The following is a listing of this program. For additional information regarding variable definitions, variable lengths, variable types, units, and codes, please see the description for **p10sta.txt** in Sect. 7.6.

```fortran
C**********************************************************************
C* FORTRAN 90 data retrieval routine to read and print the file
C* named "p10sta.txt" (File 6).
C**********************************************************************
C*Defines variables*
INTEGER stat, cast, depth
REAL lat6cm, lon6cm
CHARACTER expo*11, sect*3, date*10, time*4
OPEN (unit=1, file='p10.sta')
OPEN (unit=2, file='p10.stat')
write (2, 5)
C*Writes out column labels*
```
c* Sets up a loop to read and format all the data in the file *
read (1, 6)
format (//////////)
7 CONTINUE
read (1, 10, end=999) sta, cast, samp, bot, pre, ctdtmp,
ctdsal, ctdoxy, theta, sal, oxy, silca, nitrat, nitrit,
phspt, tcarb, alkali, dc14, c14er, qual	
format (5X, I3, 7X, I1, 6X, I2, 3X, A5, 1X, F7.1, 1X, F7.4,
1 1X, F7.4, 1X, F7.1, 1X, F7.4, 1X, F9.4, 1X, F7.1, 1X, F7.2,
2 1X, F7.2, 1X, F7.2, 1X, F7.2, 1X, F7.1, 1X, F7.1, 1X, F7.1,
3 1X, F7.1, 1X, A12)
write (2, 20) sta, cast, samp, bot, pre, ctdtmp,
ctdsal, ctdoxy, theta, sal, oxy, silca, nitrat, nitrit,
phspt, tcarb, alkali, dc14, c14er, qual	
format (5X, I3, 7X, I1, 6X, I2, 3X, A5, 1X, F7.1, 1X, F7.4,
1 1X, F7.4, 1X, F7.1, 1X, F7.4, 1X, F9.4, 1X, F7.1, 1X, F7.2,
2 1X, F7.2, 1X, F7.2, 1X, F7.2, 1X, F7.1, 1X, F7.1, 1X, F7.1,
3 1X, F7.1, 1X, A12)
GOTO 7
999 close(unit=1)
close(unit=2)
stop
end

7.4 p10pcou2a.for (File 4)

This file contains a FORTRAN 90 data-retrieval routine to read and print p10pcou2a.txt (File 8). The following is a listing of this program. For additional information regarding variable definitions, variable lengths, variable types, units, and codes, please see the description for p10pcou2a.txt in Sect. 7.8.

c***
c* FORTRAN 90 data-retrieval routine to read and print the file
cc* named "p10pcou2a.txt" (File 8).
c***
CHARACTER sect*8
 INTEGER year, qflag
 REAL jdate, latit, longit, surtmp, sursal, atmpre, xco2a
 OPEN (unit=1, file='p10pcou2a.txt')
 OPEN (unit=2, file='p10pcou2a.dat')
 write (2, 5)
c* Writes out column labels *

5 format (2X, 'SECTION', 2X, 'YEAR', 3X, 'JULIAN', 4X, 'LATIT', 3X,
1 'LONGIT', 2X, 'SUR_TEMP', 2X, 'SUR_SAL', 1X, 'ATM_PRE', 3X, 'XCO2A',
2 1X, 'QF', ',',

46
7.5 p10pc02w.for (File 5)

This file contains a FORTRAN 90 data-retrieval routine to read and print p10pc02w.txt (File 9). The following is a listing of this program. For additional information regarding variable definitions, variable lengths, variable types, units, and codes, please see the description for p10pc02w.txt in Sect. 7.9.

```fortran
4 6X,'ATM',5X,'PPM')
c*Sets up a loop to read and format all the data in the file*
read (1, 6)
format (////////////////)
CONTINUE
read (1, 10, end=999) sect, year, jdate, latit, longit,
surtmp,sursal, atmpre, xco2a, qflag
format (1X, A8, 2X, I4, 2X, F7.3, 2X, F7.3, 2X, F7.3, 2X,
1 F7.4, 2X, F7.4, 2X, F6.4, 2X, F7.3, 1X, I1)
write (2, 20) sect, year, jdate, latit, longit,
surtmp,sursal, atmpre, xco2a, qflag
format (lx, A8, 2X, 14, 2X, F7.3, 2X, F7.3, 2X, F7.3, 2X,
1 F7.4, 2X, F7.4, 2X, F6.4, 2X, F7.3, 1X, I1)
GOTO 7
999 close(unit=1)
close(unit=2)
stop
end
```
7.6 p10sta.txt (File 6)

This file provides station inventory information for each of the 94 stations occupied during the R/V Thomas G. Thompson cruise along WOCE Section P10. Each line of the file contains an expocode, section number, station number, cast number, sampling date (month/date/year), sampling time, latitude, longitude, and sounding depth. The file is sorted by station number and can be read by using the following FORTRAN 90 code (contained in stainv.for, File 2):

```fortran
INTEGER stat, cast, depth
 CHARACTER expo*11, sect*3, date*10, time*4
 REAL latdcm, londcm

 read (1, 10, end=999) expo, sect, stat, cast, date, time,
  1 latdcm, londcm, depth

10 format (All, 7X, A3, 4X, I5, 11, 3X, A8, 2X, A4, 3X, F7.3, 3X, F7.3)

Sated in tabular form, the contents include the following:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable type</th>
<th>Variable width</th>
<th>Starting column</th>
<th>Ending column</th>
</tr>
</thead>
<tbody>
<tr>
<td>expo</td>
<td>Character</td>
<td>11</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>sect</td>
<td>Character</td>
<td>3</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>stat</td>
<td>Numeric</td>
<td>3</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>cast</td>
<td>Numeric</td>
<td>1</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>date</td>
<td>Character</td>
<td>10</td>
<td>38</td>
<td>47</td>
</tr>
<tr>
<td>time</td>
<td>Character</td>
<td>4</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>latdcm</td>
<td>Numeric</td>
<td>7</td>
<td>58</td>
<td>63</td>
</tr>
<tr>
<td>londcm</td>
<td>Numeric</td>
<td>8</td>
<td>67</td>
<td>74</td>
</tr>
<tr>
<td>depth</td>
<td>Numeric</td>
<td>4</td>
<td>78</td>
<td>81</td>
</tr>
</tbody>
</table>
```

48
The variables are defined as follows:

- **expo**: is the expedition code of the cruise;
- **sect**: is the WOCE section number;
- **stat**: is the station number;
- **cast**: is the cast number;
- **date**: is the sampling date (month/day/year);
- **time**: is the sampling time [Greenwich mean time (GMT)];
- **latdcm**: is the latitude of the station (in decimal degrees; negative values indicate the Southern Hemisphere);
- **londcm**: is the longitude of the station (in decimal degrees; negative values indicate the Western Hemisphere);
- **depth**: is the sounding depth of the station (in meters).

7.7 p10dat.txt (File 7)

This file provides hydrographic, carbon dioxide, and chemical data for the 94 stations occupied during the R/V *Thomas G. Thompson* cruise along WOCE Section P10. Each line consists of a station number, cast number, sample number, bottle number, CTD pressure, CTD temperature, CTD salinity, CTD oxygen, potential temperature, bottle salinity, oxygen, silicate, nitrate, nitrite, phosphate, total CO₂, total alkalinity, Δ¹⁴C, ¹⁴C error, and data-quality flags. The file is sorted by station number and pressure and can be read by using the following FORTRAN 90 code (contained in **p10dat.for**, File 3):

```fortran
CHARACTER qualt*12, bot*5
INTEGER sta, cast, samp
REAL pre, ctdtmp, ctdsal, ctdoxy, theta, sal, oxy, silca
REAL nitrat, nitrit, phsplt, tcarb, alkali, dc14, c14er

read (1, 10, end=999) sta, cast, samp, bot, pre, ctdtmp,
1 ctdsal, ctdoxy, theta, sal, oxy, silca, nitrat, nitrit,
2 phsplt, tcarb, alkali, dc14, c14er, qualt

10 format (5X, I3, 7X, I1, 6X, I2, 3X, A5, 1X, F7.1, 1X, F7.4,
1 1X, F7.4, 1X, F7.1, 1X, F7.4, 1X, F9.4, 1X, F7.1, 1X, F7.2,
2 1X, F7.2, 1X, F7.2, 1X, F7.2, 1X, F7.1, 1X, F7.1, 1X, F7.1,
3 1X, F7.1, 1X, A12)
```

Stated in tabular form, the contents include the following:
<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable type</th>
<th>Variable width</th>
<th>Starting column</th>
<th>Ending column</th>
</tr>
</thead>
<tbody>
<tr>
<td>sta</td>
<td>Numeric</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>cast</td>
<td>Numeric</td>
<td>1</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>samp</td>
<td>Numeric</td>
<td>2</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>bot</td>
<td>Character</td>
<td>5</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>pre</td>
<td>Numeric</td>
<td>7</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>ctdtmp</td>
<td>Numeric</td>
<td>7</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>ctdsal</td>
<td>Numeric</td>
<td>7</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>ctdoxy</td>
<td>Numeric</td>
<td>7</td>
<td>58</td>
<td>64</td>
</tr>
<tr>
<td>theta</td>
<td>Numeric</td>
<td>7</td>
<td>66</td>
<td>72</td>
</tr>
<tr>
<td>sal</td>
<td>Numeric</td>
<td>9</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td>oxy</td>
<td>Numeric</td>
<td>7</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>silica</td>
<td>Numeric</td>
<td>7</td>
<td>92</td>
<td>98</td>
</tr>
<tr>
<td>nitrat</td>
<td>Numeric</td>
<td>7</td>
<td>100</td>
<td>106</td>
</tr>
<tr>
<td>nitrit</td>
<td>Numeric</td>
<td>7</td>
<td>108</td>
<td>114</td>
</tr>
<tr>
<td>phspht</td>
<td>Numeric</td>
<td>7</td>
<td>116</td>
<td>122</td>
</tr>
<tr>
<td>tcarb</td>
<td>Numeric</td>
<td>7</td>
<td>124</td>
<td>130</td>
</tr>
<tr>
<td>alkali</td>
<td>Numeric</td>
<td>7</td>
<td>132</td>
<td>138</td>
</tr>
<tr>
<td>dc14</td>
<td>Numeric</td>
<td>7</td>
<td>140</td>
<td>146</td>
</tr>
<tr>
<td>c14er</td>
<td>Numeric</td>
<td>7</td>
<td>148</td>
<td>154</td>
</tr>
<tr>
<td>qualt</td>
<td>Character</td>
<td>12</td>
<td>156</td>
<td>167</td>
</tr>
</tbody>
</table>

The variables are defined as follows:

- **sta** is the station number;
- **cast** is the cast number;
- **samp** is the sample number;
- **bot** is the bottle number;
- **pre** is the CTD pressure (dbar);
- **ctdtmp** is the CTD temperature (°C);
- **ctdsal** is the CTD salinity [on the Practical Salinity Scale (PSS)];
- **ctdoxy** is the CTD oxygen (μmol/kg);
- **theta** is the potential temperature (°C);
- **sal** is the bottle salinity (on the PSS);
- **oxy** is the oxygen concentration (μmol/kg);
silca is the silicate concentration (\textmu mol/kg);
nitrat is the nitrate concentration (\textmu mol/kg);
nitrit is the nitrite concentration (\textmu mol/kg);
phspht is the phosphate concentration (\textmu mol/kg);
tcarb is the total carbon dioxide concentration (\textmu mol/kg);
alkali is the total alkalinity concentration (\textmu mol/kg);
dc14 is the radiocarbon Δ^{14}C (per mille);
c14er is the error of Δ^{14}C (percent);
qualt is a 12-digit character variable that contains data-quality flag codes for parameters underlined with asterisks (******) in the file header.

Variables that are underlined with asterisks in the data file's header indicate they have a data-quality flag. Data-quality flags are defined as follows:

1 = sample for this measurement was drawn from water bottle but analysis was not received;
2 = acceptable measurement;
3 = questionable measurement;
4 = bad measurement;
5 = not reported;
6 = mean of replicate measurements;
7 = manual chromatographic peak measurement;
8 = irregular digital chromatographic peak integration;
9 = sample not drawn for this measurement from this bottle.

7.8 p10pco2a.txt (File 8)

This file provides underway measurements of pCO$_2$ in air during the R/V Thomas G. Thompson cruise along WOCE Section P10. Each line of the file contains a section number, sampling year, julian date (GMT), latitude, longitude, underway measurements of sea surface temperature, salinity, atmospheric pressure, air pCO$_2$, and quality flag. The file is sorted by julian date and can be read by using the following FORTRAN 90 code (contained in p10pco2a.for, File 4):

```fortran
     CHARACTER sect*8
     INTEGER year, qflag
     REAL jdate, latit, longit, surtmp, sursal, atmpre, xco2a

     read (1, 10, end=999) sect, year, jdate, latit, longit,
         surtmp, sursal, atmpre, xco2a, qflag
```
Stated in tabular form, the contents include the following:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable type</th>
<th>Variable width</th>
<th>Starting column</th>
<th>Ending column</th>
</tr>
</thead>
<tbody>
<tr>
<td>sect</td>
<td>Character</td>
<td>8</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>year</td>
<td>Numeric</td>
<td>4</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>jdate</td>
<td>Numeric</td>
<td>7</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>latit</td>
<td>Numeric</td>
<td>7</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>longit</td>
<td>Numeric</td>
<td>7</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>surtmp</td>
<td>Numeric</td>
<td>7</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>sursal</td>
<td>Numeric</td>
<td>7</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>atmpre</td>
<td>Numeric</td>
<td>6</td>
<td>63</td>
<td>68</td>
</tr>
<tr>
<td>xco2a</td>
<td>Numeric</td>
<td>7</td>
<td>71</td>
<td>77</td>
</tr>
<tr>
<td>qflag</td>
<td>Numeric</td>
<td>1</td>
<td>79</td>
<td>79</td>
</tr>
</tbody>
</table>

The variables are defined as follows:

sect is the WOCE Section number;

year is the sampling year;

jdate is the julian day of the year;

latit is the latitude of the sampling (in decimal degrees; negative values indicate the Southern Hemisphere);

longit is the longitude of the sampling (in decimal degrees; negative values indicate the Western Hemisphere);

surtmp is the sea surface temperature (°C);

sursal is the sea surface salinity (on the PSS);

atmpre is the atmospheric pressure (atm);

xco2a is the observed mole fraction of CO₂ in air [ppm (dry air)];

qflag is the quality flag of xco2a:

2 = acceptable measurements of xco2a;

3 = questionable measurements of xco2a.
This file provides underway measurements of pCO$_2$ in surface water during the
R/V Thomas G. Thompson cruise along WOCE Section P10. Each line of the file contains a
section number, sampling year, julian date (GMT), latitude, longitude, underway measurements
of sea surface temperature, salinity, equilibrator temperature, atmospheric pressure, surface
water xCO$_2$ measured at equilibrator temperature, quality flag for measured xCO$_2$, surface
water xCO$_2$ measured at sea surface temperature, and observed mole fraction of CO$_2$ in air
interpolated to the times when water measurements were made. The file is sorted by julian
date and can be read by using the following FORTRAN 90 code (contained in p10pco2w.for,
File 5):

```fortran
CHARACTER sect*8
INTEGER year, qflag
REAL jdate, latit, longit, surtmp, sursal, eqtmp, atmpre
REAL xco2eq, xco2sst, xco2a

read (1, 10, end=999) sect, year, jdate, latit, longit,
surtmp, sursal, eqtmp, atmpre, xco2eq, qflag, xco2sst, xco2a

10 format (1X, A8, 2X, I4, 2X, F7.3, 2X, F7.3, 2X, F7.3, 2X,
     2 F7.3, 2X, F7.3, 2X, F7.4, 2X, F7.4, 2X, F4.1, 2X, F6.4, 2X, F7.3, 2X, I1, 2X,
     2 F7.3, 2X, F7.3)
```

Stated in tabular form, the contents include the following:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable type</th>
<th>Variable width</th>
<th>Starting column</th>
<th>Ending column</th>
</tr>
</thead>
<tbody>
<tr>
<td>sect</td>
<td>Character</td>
<td>8</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>year</td>
<td>Numeric</td>
<td>4</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>jdate</td>
<td>Numeric</td>
<td>7</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>latit</td>
<td>Numeric</td>
<td>7</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>longit</td>
<td>Numeric</td>
<td>7</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>surtmp</td>
<td>Numeric</td>
<td>7</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>sursal</td>
<td>Numeric</td>
<td>7</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>eqtmp</td>
<td>Numeric</td>
<td>4</td>
<td>63</td>
<td>66</td>
</tr>
<tr>
<td>atmpre</td>
<td>Numeric</td>
<td>6</td>
<td>69</td>
<td>74</td>
</tr>
<tr>
<td>xco2eq</td>
<td>Numeric</td>
<td>7</td>
<td>77</td>
<td>83</td>
</tr>
<tr>
<td>qflag</td>
<td>Numeric</td>
<td>1</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>xco2sst</td>
<td>Numeric</td>
<td>7</td>
<td>89</td>
<td>95</td>
</tr>
<tr>
<td>xco2a</td>
<td>Numeric</td>
<td>7</td>
<td>98</td>
<td>104</td>
</tr>
</tbody>
</table>

The variables are defined as follows:

sect is the WOCE Section number;

year is the sampling year;

jdate is the julian day of the year;
is the latitude of the sampling (in decimal degrees; negative values indicate the Southern Hemisphere);

is the longitude of the sampling (in decimal degrees; negative values indicate the Western Hemisphere);

is the sea surface temperature (°C);

is the sea surface salinity (on the PSS);

is the equilibrator temperature (°C);

is the atmospheric pressure (atm);

is the observed mole fraction of CO₂ in surface seawater at the equilibrator temperature [ppm (dry air)];

is the xco2eq quality flag:
2 = acceptable measurements of xco2eq;
3 = questionable measurements of xco2eq;

is the mole fraction of CO₂ in surface seawater corrected to sea surface temperature [ppm (dry air)]. Temperature correction was determined from the equations of Weiss et al. (1982);

is the atmospheric xCO₂ concentrations interpolated to the times when water measurements were made [ppm (dry air)].
Table 6. Partial listing of p10pco2a.txt (File 8)

First twenty-five lines of the file:

| Source: Princeton University Princeton, NJ | "EXP CODE 3250TN026/1 WHP-1D1 CRUISE DATES 10/05/1993-11/10/1993 |
| NDP-071 July 1999 Underway pC02 (air) | "***************************************

<table>
<thead>
<tr>
<th>SECTION</th>
<th>YEAR</th>
<th>JULIAN</th>
<th>LATIT</th>
<th>LONGIT</th>
<th>SUR_TEMP</th>
<th>SUR_SAL</th>
<th>ATM_PRESS</th>
<th>XCO2A</th>
<th>QF</th>
</tr>
</thead>
</table>

Last twenty-five lines of the file:

WOCF_P10 1993 313.069 35.092 140.886 22.0856 34.7069 1.0113 361.778 2
WOCF_P10 1993 313.070 35.092 140.885 22.0856 34.7047 1.0114 360.790 2
WOCF_P10 1993 313.073 35.093 140.885 22.7894 34.7082 1.0114 361.405 2
WOCF_P10 1993 313.074 35.093 140.885 22.7866 34.7062 1.0113 361.906 2
WOCF_P10 1993 313.346 35.077 140.699 22.5957 34.6925 1.0133 360.936 2
WOCF_P10 1993 313.347 35.077 140.699 22.5957 34.6925 1.0134 362.198 2
WOCF_P10 1993 313.351 35.077 140.699 22.5957 34.6925 1.0136 361.668 2
WOCF_P10 1993 313.355 35.077 140.699 22.5957 34.6925 1.0137 356.804 2
WOCF_P10 1993 313.356 35.077 140.699 22.5957 34.6925 1.0136 357.078 2
WOCF_P10 1993 313.357 35.077 140.699 22.5957 34.6925 1.0136 361.544 2
WOCF_P10 1993 313.360 35.077 140.699 22.5957 34.6925 1.0136 357.720 2
WOCF_P10 1993 313.362 35.077 140.699 22.5957 34.6925 1.0136 358.324 2
WOCF_P10 1993 313.364 35.077 140.699 22.5957 34.6925 1.0136 359.752 2
WOCF_P10 1993 313.365 35.077 140.699 22.5957 34.6925 1.0136 359.124 2
WOCF_P10 1993 313.370 35.077 140.699 22.5957 34.6925 1.0136 359.927 2
WOCF_P10 1993 313.373 35.077 140.699 22.5957 34.6925 1.0136 358.662 2
WOCF_P10 1993 313.374 35.077 140.699 22.5957 34.6925 1.0136 359.086 2
WOCF_P10 1993 313.378 35.077 140.699 22.5957 34.6925 1.0136 359.122 2
WOCF_P10 1993 313.379 35.077 140.699 22.5957 34.6925 1.0136 360.472 2
WOCF_P10 1993 313.382 35.077 140.699 22.5957 34.6925 1.0137 359.128 2
WOCF_P10 1993 313.384 35.077 140.699 22.5957 34.6925 1.0136 358.169 2
WOCF_P10 1993 313.385 35.077 140.699 22.5957 34.6925 1.0137 357.410 2
WOCF_P10 1993 313.386 35.077 140.699 22.5957 34.6925 1.0136 357.847 2
WOCF_P10 1993 313.387 35.077 140.699 22.5957 34.6925 1.0137 357.331 2
Table 7. Partial listing of p10pco2w.txt (File 9)

First twenty-five lines of the file:

<table>
<thead>
<tr>
<th>SECTION</th>
<th>YEAR</th>
<th>JULIAN</th>
<th>LATIT</th>
<th>LONGIT</th>
<th>SUR_TEMP</th>
<th>SUR_SAL</th>
<th>ATM_PRES</th>
<th>XCO2_EQ</th>
<th>XCO2_EST</th>
<th>XCO2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOCE_P10</td>
<td>1993</td>
<td>313.167</td>
<td>35.126</td>
<td>140.832</td>
<td>22.9208</td>
<td>34.7215</td>
<td>321.052</td>
<td>347.287</td>
<td>324.688</td>
<td>347.749</td>
</tr>
</tbody>
</table>

Last twenty-five lines of the file:

<table>
<thead>
<tr>
<th>SECTION</th>
<th>YEAR</th>
<th>JULIAN</th>
<th>LATIT</th>
<th>LONGIT</th>
<th>SUR_TEMP</th>
<th>SUR_SAL</th>
<th>ATM_PRES</th>
<th>XCO2_EQ</th>
<th>XCO2_EST</th>
<th>XCO2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOCE_P10</td>
<td>1993</td>
<td>313.167</td>
<td>35.126</td>
<td>140.832</td>
<td>22.9208</td>
<td>34.7215</td>
<td>321.052</td>
<td>347.287</td>
<td>324.688</td>
<td>347.749</td>
</tr>
</tbody>
</table>

Source: C. Sabine and R. Key
Internal Distribution

1. T. A. Boden
2. M. D. Burtis
3. R. M. Cushman
4-28. S. B. Jones
29. D. P. Kaiser
30. P. Kanciruk
31. J. M. Loar
32. T. E. Myrick
33. D. E. Shepherd
34. L. D. Voorhees
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

External Distribution

41. J. Afghan, Marine Physical Laboratory, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92039-0902
42. A. G. Alexiou, UNESCO/IOC, 1 rue Miollis, 75732 Paris Cedex 15, France
43. W. E. Asher, University of Washington, Joint Institute for the Study of the Atmosphere and the Ocean, Box 354235, Seattle, WA 98195
44. N. Bates, Bermuda Biological Station for Research, Ferry Reach GE 01, Bermuda
45. R. Bidigare, University of Hawaii, Department of Oceanography, 1000 Pope Road, Honolulu, HI 96822
46. P. G. Brewer, Monterey Bay Aquarium Research Institute, P.O. Box 628, 7700 Sandholt Road, Moss Landing, CA 95039
47. O. B. Brown, University of Miami, 4500 Rickenbacker Causeway, Miami, FL 33149
48. C. Brunet, Laboratoire de Physique et Chimie Marines, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
49. R. H. Byrne, University of South Florida, Department of Marine Science, 140 Seventh Avenue S., St. Petersburg, FL 33701
50. E. G. Cumesty, ORNL Site Manager, Department of Energy, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6269
51. G. Cutter, Old Dominion University, Department of Oceanography, Norfolk, VA 23529
52. G. Daneri, CEA Universidad del Mar, Dept. de Oceanografia y Biologia Pesquera, Amunaategui 1838, Vina Del Mar, Chile
53. A. G. Dickson, Scripps Institution of Oceanography, University of California, San Diego, Marine Physical Laboratory, 9500 Gilman Drive, La Jolla, CA 92093-0244
54. S. Doney, National Center for Atmospheric Research, Oceanography Section, P.O. Box 3000, Boulder, CO 80307
55. H. W. Ducklow, College of William and Mary, Virginia Institute of Marine Sciences, P.O. Box 1346, Gloucester Point, VA 23062
56. J. W. Elwood, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
57. G. Esser, Justus-Liebig-University, Institute for Plant Ecology, Heinrich-Buff-Ring 38, D-35392 Giessen, Germany
58. R. A. Feely, NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115
59. W. Ferrell, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
60. R. H. Gammon, University of Washington, Chemistry Department, Box 351700, Seattle, WA 98195
61. J.-P. Gattuso, Observatoire Oceanologique European, Avenue Saint-Martin, MC-98000, Monaco
62. J. P. Giesy, Michigan State University, College of Natural Science, Department of Zoology, 203 Natural Science Building, East Lansing, MI 48824-1115
63. J. Goddard, Columbia University, Lamont-Doherty Earth Observatory, Climate/Environment/Ocean Division, Rt. 9W, Palisades, NY 10964
64. C. M. Goyet, Woods Hole Oceanographic Institute, Marine Chemistry and Geochemistry Department, 360 Woods Hole Road, MS #25, Woods Hole, MA 02543
65. N. Gruber, Princeton University, Atmospheric and Oceanic Sciences, 304 A Sayre Hall, Princeton, NJ 08544
66. P. Guenther, Geosciences Research Division 0220, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92030-0422
67. D. O. Hall, University of London, Division of Biosphere Sciences, King’s College, Campden Hill Road, London W8 7AH, United Kingdom
68. A. Harashima, Japan Environment Agency, Global Environmental Research Division, 16-2 Onogawa, Tsukuba, Ibaraki 305, Japan
69. M. Hein, Freshwater Biological Laboratory, Helsingorgsgade 51, DK-3400 Hilleroed, Denmark
70. A. Hittleman, WDC-A for Solid Earth Geophysics, NOAA Code E/GC1, 325 Broadway, Boulder, CO 80303
71. H. Hodgson, British Library, Boston Spa, DSC, Special Acquisitions, Wetherby, West Yorkshire, LS23 7BQ, United Kingdom
72. H. Hong, Xiamen University, Environmental Science Research Center, Post Code 361005, Mail Box 1085, Xiamen, Fujian, Peoples Republic of China
73. C. A. Hood, GCRIO, 2250 Pierce Road, Bay City, MI 48710
74. J. C. Houghton, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
75. H. Y. Inoue, Geochemical Research Department, Meteorological Research Institute, Nagamine 1-1, Tsukuba, Ibaraki 305-0032, Japan
76. M. Ishii, Geochemical Research Department, Meteorological Research Institute, Nagamine 1-1, Tsukuba, Ibaraki 305-0032, Japan
77. F. Joos, University of Bern, Physics Institute, KUP, Sidlerstr. 5, Bern CH-3012, Switzerland
78. D. M. Karl, University of Hawaii, Department of Oceanography, 1000 Pope Road, Honolulu, HI 96822
79. T. R. Karl, National Climatic Data Center, 151 Patton Avenue, Federal Building, Room 516E, Asheville, NC 28801
80. S. Kempe, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
81-85. R. M. Key, Princeton University, Geology Department, Princeton, NJ 08544
86. K.-R. Kim, Seoul National University, Dept. of Oceanology, Seoul 151-7442, Korea
87. T. Kimoto, Research Institute of Oceano-Chemistry, Osaka Office, 3-1 Fumahashi-cho, Tennoji-ku, Osaka 543, Japan
88. D. Kitzis, Environmental Research Laboratories, NOAA, 325 Broadway, Boulder, CO 80308-3328
89. B. Klein, University Laval, GIROQ, Pav. Vachon, Quebec, PQ, G1K 7P4, Canada
90. J. C. Klink, Miami University, Department of Geography, 217 Shideler Hall, Oxford, OH 45056
91. J. Val Klump, University of Wisconsin, Center for Great Lakes Studies, 600 E. Greenfield Avenue, Milwaukee, WI 53204
92. A. Körtzinger, Institut für Meereskunde, Düsternbrooker Weg 20, 24105 Kiel, Germany
93. A. Kozyr, The University of Tennessee, Pellissippi Research Facility, 10521 Research Drive, Suite 100, Knoxville, TN 37932
94. S. Levitus, National Oceanographic Data Center, National Oceanic and Atmospheric Administration, E/OC5, 1315 East West Highway, Room 4362, Silver Spring, MD 20910
95. E. Lewis, Brookhaven National Laboratory, Upton, NY 11973
96. A. A. Lucier, National Council of the Paper Industry, Air and Stream Improvement, P.O. Box 13318, Research Triangle Park, NC 27709-3318
97. P. Lunn, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
98. T. H. Mace, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Environmental Sciences Division/ORD, P.O. Box 93478, Las Vegas, NV 89193-3478
99. J. J. McCarthy, Harvard University, Museum of Comparative Zoology, 26 Oxford Street, Cambridge, MA 02138
100. M. C. MacCracken, Director, Office of the U.S. Global Change Research Program, Code YS-1, 300 E. Street, SW, Washington, DC 20546
101. L. Merlivat, LODYC, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
102. N. Metzl, Université Pierre et Marie Curie, Laboratoire de Physique et Chimie Marines, T 24-25-Case 134, 4 place Jussieu, 75252 Paris Cedex 05, France
103. F. J. Millero, University of Miami, RSMAS, 4600 Rickenbacker Causeway, Miami, FL 33149
104. L. Mintrop, Abteilung Meereschemie, Institut für Meereskunde, Düsternbrooker Weg 20, D-24105 Kiel, Germany
105. J. W. Morse, Texas A&M University, Department of Oceanography, College Station, TX 77843
106. R. E. Munn, University of Toronto, Institute for Environmental Studies, Haultain Building, 170 College Street, Toronto, Ontario M5S 1A4, Canada
107. S. Murayama, National Institute for Resources and Environment, Environmental Assessment Department, 16-3 Onogawa, Tsukuba, Ibaraki 305, Japan
108. P. P. Murphy, National Oceanographic Data Center, National Oceanic and Atmospheric Administration, E/OC5, 1315 East West Highway, Room 4362, Silver Spring, MD 20910
108. National Oceanic and Atmospheric Administration, Central Library, 1315 East-West Highway, 2nd Floor, SSMC 3, Silver Spring, MD 20910
109. S. Nishioka, National Institute for Environmental Studies, Global Environment Research Division, 16-2 Onogawa, Tsukuba, Ibaraki 305, Japan
110. Y. Nojiri, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-0053, Japan
111. J. R. Oh, Korea Ocean Research and Development Institute, Chemical Oceanography Division, An San P.O. Box 29, Seoul 4325-600, Korea
112. J. Olafsson, Marine Research Institute, P.O. Box 1390, Skulagata 4, 121 Reykjavik, Iceland
113. E. Ohtaki, Environmental Science and Technology, Okayama University, Tsushima-Naka 2-1-1, Okayama 700, Japan
114. C. Oudot, Centre ORSTOM de Cayenne, B.P. 165-97323, Cayene Cedex, Guyana
115. A. C. Palmisano, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
116. B. Parra, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
117. A. Patrinos, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
118. T.-H. Peng, NOAA/AOML, Ocean Chemistry Division, 4301 Rickenbacker Causeway, Miami, FL 33149
119. A. Poisson, Laboratoire de Physique et Chimie Marines, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
120. D. B. Preselin, University of California, Department of Biological Sciences, Santa Barbara, CA 93106
121. P. D. Quay, University of Washington, School of Oceanography, Box 357940, Seattle, WA 98195
122. R. Y. Rand, USDA, Global Change Data and Information Management, 10301 Baltimore Boulevard, Beltsville, MD 20705
123. J. L. Reid, Scripps Institution of Oceanography, University of California San Diego, M/C 0230; 9500 Gilman Drive, La Jolla, CA 92093-0230
124. J. Ribbe, University of Washington, Joint Institute for the Study of the Atmosphere and Oceans, Box # 35425, Seattle, WA 98195
125. M. R. Riches, Department of Energy, Office of Biological and Environmental Research, Environmental Sciences Division, SC-74, 19901 Germantown Road, Germantown, MD 20874
126. M. F. Roberts, Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115
127. L. Robinson, Director, Environmental Sciences Institute, Florida A&M University, Science Research Facility, 1520 S. Bronough Street, Tallahassee, FL 32307
128. S. Rubin, YSI, Inc., 1700/1725 Brannum Lane, Yellow Springs, OH 45387
129-33. C. L. Sabine, Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115
134. M. M. Sarin, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
135. J. L. Sarmiento, Princeton University, Atmospheric and Oceanic Sciences Program, P.O. Box CN710, Sayre Hall, Princeton, NJ 08544
136. B. Schneider, Baltic Sea Research Institute, Seestrase 15, Warnmunde, D-18 119, Germany
137. K. Shitashima, Central Research Institute of Electric Power Industry, Marine Science Group, 1646 Abiko, Abiko-city, Chiba, 270-11, Japan
138. N. Silva, Universidad Catolica de Valparaiso, Escuela de Ciencias de Mar, Casilla 1020, Valparaiso, Chile
139. M. H. C. Stoll, Netherlands Institute for Sea Research (NIOZ), Dept. MCG, P. O. Box 59, 1790 AB Den Burg-Texel, The Netherlands
141. S. C. Sutherland, Columbia University, Lamont-Doherty Earth Observatory, P.O. Box 1000, U.S. Route 9W, Palisades, NY 10964
142. J. H. Swift, Scripps Institution of Oceanography, University of California, San Diego Oceanographic Data Facility, 9500 Gilman Drive, La Jolla, CA 92030-0124
143. T. Takahashi, Columbia University, Lamont-Doherty Earth Observatory, Climate/Environment/Ocean Division, Rt. 9W, Palisades, NY 10964
144. L. Talley, Scripps Institution of Oceanography, University of California San Diego, M/C 0230, 9500 Gilman Drive, La Jolla, CA 92030-0230
145. P. Tans, Climate Monitoring and Diagnostics Laboratory, NOAA, 325 Broadway, Boulder, CO 80308-3328
146. J. A. Taylor, Australian National University, CRES, GPO Box 4, Canberra, ACT 0200, Australia
147. J. M. Tiedje, 540 Plant and Soil Sciences Building, Michigan State University, East Lansing, Michigan 48824
148. B. Tilbrook, CSIRO Division of Marine Research, P.O. Box 1538, Hobart TAS 7001, Australia
149. J. R. G. Townshend, University of Maryland, Dept. of Geography, 1113 Lefrak Hall College Park, MD 20742
150. J. Tucker, Marine Biological Laboratory, Woods Hole, MA 02543
151. D. Turner, University of Goteborg, Department of Analytical and Marine Chemistry, S-41296 Goteborg, Sweden
152. D. W. R. Wallace, Abteilung Meereschemie, Institut für Meereskunde, Düsternbrooker Weg 20, D-24105 Kiel, Germany
153. R. H. Wanninkhof, NOAA/AOML/OCD, 4301 Rickenbacker Causeway, Miami, FL 33149
154. A. J. Watson, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
155. F. Webster, University of Delaware, College of Marine Studies, Lewes, DE 19958
156. R. F. Weiss, Scripps Institution of Oceanography, University of California, Mail Code A-020, Room 2271, Ritter Hall, La Jolla, CA 92093
157. C. Winn, Associate Professor and Director of Marine Science, Hawaii Pacific University, 45-045 Kamehameha Hwy., Kaneohe, HI 96744-6297
158. C. S. Wong, Government of Canada, Institute of Ocean Sciences, P.O. Box 6000, 9860 West Saanich Road, Sidney, BC V8L 4B2, Canada
159. L. Xu, Xiamen University, Environmental Science Research Center, Xiamen, Fujian, Peoples Republic of China
160. E. Yakushev, Shirshov Institute of Oceanology, 23 Krasikova, Moscow 117218, Russia
161. E. Yamashita, Research Institute of Technology, Okayama University, Ridaicho 1-1, Okayama 700, Japan
162. Y. Yosuoka, National Institute for Environmental Studies, Center Global Environment Research, 16-2 Onogawa, Tsukuba, Ibaraki 305, Japan
163. Database Section, National Institute for Environmental Studies, Center for Global Environmental Research, 16-2 Onogawa, Tsukuba, Ibaraki 305, Japan
164. Energy Library (HR-832.2/WAS), Department of Energy, Office of Administration and Management, GA-138 Forrestal Building, Washington, DC 20585
165. Energy Library (HR-832.1/GTN), Department of Energy, Office of Administration and Management, G-034, Washington, DC 20585
166-67. Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831