Identification of dynamic properties from ambient vibration measurements

PDF Version Also Available for Download.

Description

To better understand the dynamic behavior of structures under normal dynamic loads as well as extreme loads such as those caused by seismic events or high winds, it is desirable to measure the dynamic properties (resonant frequencies, mode shapes and modal damping) of these structures. The cross-correlation function between two response measurements made on an ambiently excited structure is shown to have the same form as the system`s impulse response function. Therefore, standard time-domain curve-fitting procedures such as the complex exponential method, which are typically applied to impulse response functions, can now be applied to the cross-correlation functions to estimate ... continued below

Physical Description

20 p.

Creation Information

Farrar, C.R. & James, G.H. III September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

To better understand the dynamic behavior of structures under normal dynamic loads as well as extreme loads such as those caused by seismic events or high winds, it is desirable to measure the dynamic properties (resonant frequencies, mode shapes and modal damping) of these structures. The cross-correlation function between two response measurements made on an ambiently excited structure is shown to have the same form as the system`s impulse response function. Therefore, standard time-domain curve-fitting procedures such as the complex exponential method, which are typically applied to impulse response functions, can now be applied to the cross-correlation functions to estimate the resonant frequencies and modal damping of the structure. A direct comparison of resonant frequencies identified by curve-fitting the cross-correlation functions, using traffic excitation as the ambient vibration source, and modal properties identified by standard forced vibration testing of a highway bridge, after traffic was removed, showed a maximum discrepancy of 3.63%. Similar comparisons for the average modal damping values identified by the two methods showed a 9.82% difference. This experimental verification implies that the proposed method of analyzing ambient vibration data has the potential to accurately assess the dynamic properties of large structures subjected to seismic excitations and small structures that are tested on a shake table.

Physical Description

20 p.

Notes

OSTI as DE95016858

Medium: P; Size: 20 p.

Source

  • Pacific conference on earthquake engineering, Melbourne (Australia), 20-22 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016858
  • Report No.: LA-UR--95-2153
  • Report No.: CONF-9511115--1
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 102135
  • Archival Resource Key: ark:/67531/metadc622473

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 7:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Farrar, C.R. & James, G.H. III. Identification of dynamic properties from ambient vibration measurements, article, September 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc622473/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.