Analysis of Tracer Tests with Multirate Diffusion Models: Recent Results and Future Directions within the WIPP Project

PDF Version Also Available for Download.

Description

A series of single-well injection-withdrawal (SWIW) and two-well convergent-flow (TWCF) tracer tests were conducted in the Culebra dolomite at the WIPP site in late 1995 and early 1996. Modeling analyses over the past year have focused on reproducing the observed mass-recovery curves and understanding the basic physical processes controlling tracer transport in SWIW and TWCF tests. To date, specific modeling efforts have focused on five SWIW tests and one TWCF pathway at each of two different locations (H-11 and H-19 hydropads). An inverse parameter-estimation procedure was implemented to model the SWIW and TWCF tests with both traditional and multirate double-porosity ... continued below

Physical Description

10 p.

Creation Information

ALTMAN, SUSAN J.; HAGGERTY, ROY; MCKENNA, SEAN A. & MEIGS, LUCY C. October 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A series of single-well injection-withdrawal (SWIW) and two-well convergent-flow (TWCF) tracer tests were conducted in the Culebra dolomite at the WIPP site in late 1995 and early 1996. Modeling analyses over the past year have focused on reproducing the observed mass-recovery curves and understanding the basic physical processes controlling tracer transport in SWIW and TWCF tests. To date, specific modeling efforts have focused on five SWIW tests and one TWCF pathway at each of two different locations (H-11 and H-19 hydropads). An inverse parameter-estimation procedure was implemented to model the SWIW and TWCF tests with both traditional and multirate double-porosity formulations. The traditional model assumes a single diffusion rate while the multirate model uses a first-order approximation to model a continuous distribution of diffusion coefficients. Conceptually, the multirate model represents variable matrix block sizes within the Culebra as observed in geologic investigations and also variability in diffusion rates within the matrix blocks as observed with X-ray imaging in the laboratory. Single-rate double-porosity models cannot provide an adequate match to the SWIW data. Multirate double-porosity models provide excellent fits to all five SWIW mass-recovery curves. Models of the TWCF tests show that, at one location, the tracer test can be modeled with both single-rate and multirate double-porosity models. At the other location, only the multi-rate double-porosity model is capable of explaining the test results.

Physical Description

10 p.

Notes

INIS; OSTI as DE00012717

Medium: P; Size: 10 pages

Source

  • 3rd Aspo International Seminar on Characterization and Evaluation of Sites for Deep Geological Disposal of Radioactive Wastes in Fractured Rocks, Oskarshamn (SE), 06/10/1998--06/12/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND98-0810C
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 12717
  • Archival Resource Key: ark:/67531/metadc622443

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 6:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

ALTMAN, SUSAN J.; HAGGERTY, ROY; MCKENNA, SEAN A. & MEIGS, LUCY C. Analysis of Tracer Tests with Multirate Diffusion Models: Recent Results and Future Directions within the WIPP Project, article, October 1, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc622443/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.