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This is ow final report on Sandia National Laboratories Laboratory-Directed 
Research and Development (LDRD) project 3517.070. Its purpose has been to 
investigate lossless compression of digital wavefonn and image data, particularly 
the types of instrumentation data generated and processed at Sandia Labs. The 
thee-year project period ran fiom October 1992 through September 1995. 

This report begins with a descriptive overview of data compression, with and 
without loss, followed by a summary of the activities on the Sandia project, 
including research at several universities and the development of waveform 
compression software. Persons who participated in the project are also listed. 

The next part of the report contains a general discussion of the principles of 
lossless compression. Two basic compression stages, decorrelation and entropy 
coding, are described and discussed. An example of seismic data compression 
is included. 

Finally, there is a bibliography of published research. Taken together, the 
published papers contain the details of most of the work and accomplishments 
on the project. This final report is primarily an overview, without the technical 
details and results found in the publications listed in the bibliography. 
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FINAL REPORT: 
LOSSLESS COMPRESSION 

OF INSTRUMENTATION DATA 

Introduction 

Techniques for data compression have been in use for a long time. The oldest techniques 
are those used for the compression of text composed from a fixed alphabet of symbols. The 
Morse code, in which symbols used more frequently generally have shorter codes, is an 
example of text compression using fixed-symbol coding. 

Compression of data is said to be ZossZess if, in an error-fiee environment, the original 
data can be recovered exactly from the compressed data. Thus, for our purposes, "loss" refers 
only to the compression process itself, and not to other types of loss due to communication 
channel noise, storage dropouts, or other causes. All fixed-symbol coding and other text 
compression methods are lossless in this sense. If the compression technique is such that the 
recovered (decompressed) data is only an approximation to the original data, then the 
technique is lossy. 

This is the final report on a Laboratory-Directed Research and Development (LDRD) 
project to investigate lossless compression of digitized instrumentation data. Traditional 
waveform data compression techniques, that is, speech and video compression techniques, 
are lossy. The decompressed signal is not an exact replica of the original signal, even though 
it may sound the same to an average listener or look the same to an average viewer. The 
purpose of this project has been to develop and extend new data compression techniques that 
are lossless, that is, that allow exact recovery of the original data. The new lossless 
compression techniques are applicable specifically to the large field test and telemetry 
instrumentation data bases at Sandia, and generally to similar data bases where lossy 
compression is not acceptable. They are also applicable to real-time communications in 
space and global surveillance systems, where again exact recovery of the original signals is 
essential, and bandwidth is at a premium. Furthermore, they are applicable to image 
compression in areas such as medical x-rays, where exact data must be preserved for legal 
reasons, and in satellite and radar imaging cases wherever exact image recovery is required. 

As one would expect, less compression is possible in general when exact recovery is 
required, that is, with lossless compression. Figure 1 shows a simple method for converting 
fiom lossy to lossless compression. If the "recovery" process shown in the figure is used on 
the compressed waveform as shown, and if the "difference" in the figure is added to the 
recovered version of the compressed waveform, the result will be an exact replica of the input 
waveform. Thus, to achieve exact recovery, the compressed data must contain the difference 
in addition to the compressed waveform, and so there is less overall compression. Lossless 
compression is not done exactly as in Fig. 1 , but it is clear that less compression is the usual 
result. 
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Figure 1. Lossy to lossless conversion. 

Nevertheless, significant savings in bandwidth or storage space are possible with 
instrumentation data. For example, with seismic and ground motion data, which has 
comprised most of our experimental data, storage requirements have been reduced to less 
than 12% of the original amount. 

More precise and complete experimental results have been reported, and some examples 
are included later in this report. First, we provide a summary of the activities on the project, 
and describe the principles and basic theory of lossless waveform compression. 

Summary of Activities 

Funded research on lossless compression has been conducted at four locations: Sandia 
Labs, the University of Colorado at Boulder, the University of Central Florida at Orlando, 
and the University of New Mexico at Albuquerque. These universities were selected partly 
because, in each case, there was a key faculty member who was already recognized nationally 
for work in digital signal processing and signal compression. In addition, contributions have 
been made by other faculty and students at several universities who have become interested 
in the work. A brief summary of the personnel and developments at each sponsored location 
follows. In most cases, the relevant references in the Bibliography are noted. 

Sandia Personnel: S.D. S t e m ,  J.A. Davis, G.J. Simmons, J. Pearcy, T. Marking, R.M. 
Clancy, D.M. Honea, G.R. Elliott, M.V. Bredemann. 

Originated and developed two-stage lossless compression technique [J6,J1lYJ12]. 
Developed and tested lossless linear predictive coding [p30]. 
Developed and applied new bi-level and arithmetic coding techniques [J6,J12]. 
Implemented two-stage compression in a Fortran source library, CMPLIB.FOR 

Implemented a companion technique for data authentication using cyclic codes. 
Compressed and authenticated seismic data base for Test Information Program Ip301. 
Compressed and authenticated satellite telemetry data for Dept. 9225. 

(DOE copyright July 1995). 
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Sponsored faculty/student research at three universities. Six dissertations Ip1 -D6]. 
Organized sessions on compression at international conferences Ip7-Pl3,P 18-P26]. 

uc Personnel: Prof. D.M. Etter, students J.W. Haines and M. Coffey. 
Studied lossless waveform compression using wavelets and multirate filters 

Translated the Fortran source library, CMPLIB, into the C programming language. 
Ip19,P25]. 

UCF Personnel: Prof. W.B. Mikhael, students Y.W. Nijim, A. Ramaswamy, A.P. Berg,. 

Surveyed techniques for lossless compression [Pl,P21]. 
Developed new differentiation methods for lossless predictive coding 

Applied differentiation methods to lossless image compression Ip4,P24]. 
Studied lossless waveform and image compression using mixed transform coding 

and S.M. Ghosh 

[P3,J4,P3,P4,P20]. 

[P4,D5,Cl,P3,Pl l,P16,P24,P29]. 

W M  Personnel: Profs. N. Magotra and N. b e d ,  students L.Z. Tan, J.W. McCoy, G. 

Developed basic theory for optimizing lossless predictive coding [P2,D6,Jll,P17]. 
Developed an adaptive lattice scheme for lossless prediction [P2,P17]. 
Studied codebook design and other methods for lossless image compression Ip6]. 
Studied real-time implementations of lossless waveform compression Ip 121. 
Developed a DCT-based scheme for lossless image compression Ip131. 
Wrote compression section for CRC Industrial Electronics Handbook [B 11. 

Mandyam, and F. Livingston. 

Contributions from universities not sponsored by the LDRD project, notably by R.L. 
Kirlin at the University of Victoria, G. Coutu at the Hartford Graduate Center, and M. 
Fargues at the Naval Postgraduate School, can be seen by referring to the conference papers 
in the Bibliography Ip107P14,P1 8,P3 1,P32]. 

Compressibility 

In this section of the final report we begin a brief general discussion of lossless 
waveform compression. The purpose here is to provide some basic concepts that help us to 
decide which waveforms are compressible and which are not, and to decide theoretically how 
much we may be able to compress a given waveform. 

Our principal measure of compressibility is the compression ratio, which is defined as 
the number of bits in the original data divided by the number of bits in the compressed data. 
Suppose the original waveform data consists of ix(0:K- 1) = [irk], a vector with K integer 
elements, and that the compressed version of ix is iy(O:N,- l), a vector with Ny binary 
elements (bits). Then the compression ratio isthe number of bits in ix divided by Ny’ 
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In the literature on waveform compression, the number of bits in ix is not measured 
consistently. A conservative measure, which we will use here, is K times the number of bits 
needed to represent the sign and magnitude of the sample with the largest magnitude in ix. 
Thus, if r.1 stands for "the least integer equal to or greater than (.)", then 

Number of bits in ix E Kbps& = K ( l  + ~lo&lixkl-l) 

The number of bits per sample in ix, bps,, is found simply by dividing (1) by K, and the 
number of bits per sample in the compressed vector, bpsW is Ny/K. With these definitions, 
the compression ratio (CR) is expressed as r- 

When comparing results using the compression ratio, it is important to consider not only the 
data being compressed, but also the definition of the compression ratio. If, for example, the 
length in bits of an ASCII file is used in place of (1) for the length of ix, the compression 
ratio will appear to be much larger than the value of CR computed using (2). 

and the data being compressed. In many practical cases, such as text, speech, and video 
coding, the maximum compression ratio is based on the amount of usefid information in the 
signal, and the definition of "useful" can be very subjective. In lossless compression, on the 
other hand, objective statements are more easily made about the compressibility of signals in 
general, and about the maximum compression ratio that can be achieved with particular 
signals. 

excluding special "codebook" schemes where there is a priori knowledge of the waveform 
structure IPS], there are two statistical properties that determine the compressibility of a 
waveform: the distribution of waveform amplitudes, and the distribution of the waveform 
power in the fiequency domain. As suggested by Fig. 2, the degree of compressibility 
depends on the degree of nonuniformity of each of these distributions. The first waveform, 
which is uniform white noise, is essentially incompressible. The second, white noise with a 
nonuniform amplitude distribution, is somewhat compressible. The third and fourth 
waveforms, with nonuniform power distributions, are highly compressible. 

Typical instnunentation and telemetry waveforms do not usually have uniform 
amplitude and power distributions. A uniform distribution of power in the frequency domain 
translates to an impulsive correlation function in the time domain, that is, to uncorrelated 
data, and instrumentation data is typically correlated, and therefore compressible. 

Assuming a consistent measure, the value of CR depends on the compression scheme 

Some examples of different degrees of compressibility are shown in Fig. 2. In general, 
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Figure 2. Examples of wavefoms with different compressibility. 

Compression in Two Stages 

In this and the next three sections we complete the general discussion of lossless 
waveform compression by discussing the two-stage process shown in Fig. 3. We have 
focused on the basic two-stage concept throughout the project, and have developed computer 
codes that implement the scheme in Fig. 3 with linear predictive coding and arithmetic 
residue coding. 

Figure 3. Lossless waveform compression in two stages. 
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The purpose of the first stage in Fig. 3 is to decorrelate the input sequence, ix(0:K- l), 
and produce a residue sequence, ir(MX- l), the latter having a more or less flat power 
density spectrum, in an exactly reversible manner. In this operation, predictive coding has 
the effect of removing power from ix, so that the ratio of standard deviations, UJU, , is 
generally greater than one. In fact, we usually take u,/u, as a measure of success of the first 
compression stage. With reversible linear predictive coding, for some types of data, uir/uir 
can be several orders of magnitude. 

The purpose of the second stage is to compress the residue sequence, ir(MK- I), into 
the binary sequence iy(O:Ny-l). As suggested in Fig. 2, ir is compressible if its amplitude 
values are distributed nonuniformly, which is generally the case for the residue sequence 
from a predictive coder. 

Predictive Coding 

At Sandia we have implemented the first stage in the form of a recoverable linear 
predictive coding process based on traditional linear prediction. This form has been the 
standard of comparison for more recent developments during the course of the project, some 
of which have been more successful with given types of data. In general, the predictive 
coding stage in Fig. 3 must be in the form of Fig. 4. As long as the unit delays (2-*) are used 
as shown, the process of producing ir form ix is predictive. Furthermore, it is not difficult to 
see that the process is reversible, that is, given an identical "filter" for recovery, ix can be 
recovered exactly from ir. The "filter" may be linear or nonlinear, may be recursive or 

Figure 4. General form of the prediction stage in Fig. 3. 

nomecursive, may or may not use memory, and may be fixed or time-varying. The goal in 
lossless compression is to discover filters that best decorrelate ix and thereby maximize the 
power ratio, uJuir, in different situations. 

differentiation techniques were investigated by Mikhael, Nijim, and others [J4,P3,P4,P20]. 
Several filter schemes were studied during the course of the project. Various 
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Nijim and Mikhael also studied a recursive modeling scheme in the form of Fig. 4 Ips]. 
Various forms of adaptive filters were investigated by Coutu and Fargues [ P l O ]  and by 
McCoy and Magotra Ip171. An adaptive lattice structure by the latter appears promising at 
this time. The use of multirate filter banks, which amounts to a wavelet transformation, was 
studied by Etter, Haines, and Coffey Ip9,P25], and some linear two-dimensional predictor 
forms were studied by Ghosh and Mikhael Ip231. Much of this work is still proceeding, and 
will continue past the end of the project at Sandia. 

Residue Coding 

Given that the first stage produces a decorrelated residue sequence, ir, the objective of 
the second coding stage is to produce a binary sequence (& in Fig. 3) with a length, Ny , 
approaching the residue sequence length, K-My times the entropy in bits per sample of the 
residue sequence, ir. The entropy of ir depends entirely on the amplitude distribution of ir 
and is given by 

Entropy of ir = - f(ir)log,f(ir) (3) 

wheref(ir1 is the fiequency of occurrence of ir in the sequence ir(MK- l), such that the 
fiequencies sum to one. 

As suggested by the examples in Fig. 2, a uniform distribution of ir amplitudes, where 
all fiequencies are equal, produces maximum entropy. That is, ifthe range of ir fiom irmi,., 
through ir,, is R, and if all values of ir appear equally often in ir(MK- l), then the entropy 
in (3) is log,R bits per symbol. When the values of ir are distributed uniformly, second-stage 
coding cannot be expected to compress the residue sequence, no matter which scheme is 
chosen. 

At the other extreme, if one value of ir appears in the residue sequence nearly always, 
so thatfir) is close to one for this value and near zero for other values of ir, then the entropy 
in (3) is close to zero. In this case, almost any second-stage coding scheme can be expected 
to produce significant compression of the residue sequence. 

In the practical applications we have studied, with linear predictive coding as the first 
compression stage, the distribution of ir has been essentially Gaussian, which is a 
compromise between the two extremes just mentioned. At the beginning of the project we 
developed a bi-level coding technique Ip6,Jll,J12,P32,P34] which is relatively simple, but 
performs suboptimally with Gaussian residue data. More recently, we have developed a 
practical method to implement the second compression stage with a form of arithmetic 
coding Ip2,D6,J6]. This method produces near-entropy coding, that is, nearly the minimum 
number of bits per sample given by (3), and represents an improvement over the bi-level 
method. It also appears to work well with non-Gaussian residue sequences. 
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Transform Coding 

Transform coding is an alternative to the two-stage process in Fig. 3 that is often used 
in lossy waveform and image compression. In lossy transform coding the waveform, 
ix(0:K- I), is first transformed using the Discrete Cosine Transform (DCT) or some other 
transform. Then the set of transform values is compressed, typically via quantization or by 
eliminating "unimportant" components. With narrow-band data, for example, DCT 
components outside the band can be eliminated without compromising the data. In some 
cases, the compression process may even increase the signal-to-noise ratio. In 
decompression, the approximation to ix is then reconstructed fiom the compressed transform 
data. 

@34,D5,Cl,P3,Pll, P13], but to date we have not seen superior results when the coding is 
made truly lossless. To make transform coding lossless we must revert essentially to the 
scheme in Fig. 1 , and include a difference signal, which may itself be compressed. This 
added burden of data has the effect of increasing Ny and reducing the compression ratio in 

Applications of transform coding have been studied at UCF and UNM 

(2)- 

Example: Seismic Waveform Compression 

We include here a single example of lossless seismic waveform compression to 
illustrate the operation of each of the two compression stages with real data. The papers 
listed in the Bibliography contain many examples of both waveform and image compression. . 
Several papers contain statistics on the compression of waveforms in a large seismic data 
base [J6,P3OYP33]. 

A waveform fiom a short-period vertical seismometer, courtesy of C.R. Hutt, USGS 
Albuquerque Seismological Laboratory, is shown in Fig. 5. The segment shown has a total 
duration of 3000 s and was recorded at Albuquerque during the Loma Prieta Earthquake near 
Santa C w ,  California in October, 1989. The recording rate was 20 samples/s. 

Amplitude sind power distributions are shown below the plot of ix in Fig. 5. These 
represent statistics for the entire waveform. The amplitude distribution is from -5010~ to 
+5.1O5 in intervals of lo4. The power density spectrum was taken by averaging magnitudes 
of DFT's of half-overlapping segments of size 256. We note that neither distribution is 
uniform and therefore, as discussed in connection with Fig. 2, the seismic waveform here is 
compressible. 

compressed via the two-stage process in Fig. 3, using non-adaptive linear prediction in the 
first stage and non-adaptive arithmetic residue coding in the second stage. The value of K 
used here is not critical and is typical for nonstationary waveforms such as ix in Fig. 5. 

The waveform ix in Fig. 5 was partitioned into 60 frames, each of size K=lOOO, and 
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Figure 5. Seismic waveform, ix(0:59999), with amplitude and power distributions. 

The output of the first compression stage, ir(A4-Q is plotted continuously for all 60 
fiames in Fig. 6.  The amplitude and power distributions in Fig. 6 were obtained as in Fig. 5, 
except that the amplitude interval in Fig. 6 is 1 instead of lo4. For each fiame, ir(M) was 
extended back through ir(0) to give a more continuous plot. The values of Mranged fiom 2 
through 8 in the 60 fiames. In this case the residue sequence, ir, is seen to be on the order of 
four orders of magnitude smaller than the original sequence, ix. Thus the ratio of standard 
deviations, uitluir , which measures the performance of the first stage as discussed previously 
in connection with Fig. 3, indicates significant first-stage compression in this example. 

The cause of the large compression from ix in Fig. 5 to ir in Fig. 6 can be seen by 
comparing the power density spectra. The spectrum of ix varies through about 12 orders of 
magnitude, indicating that the samples of ix are far fiom independent. The spectrum of ir, on 
the other hand, varies through only about one order of magnitude, indicating that the 
predictor has successfully decorrelated each fiame of ix. Note that, in our implementations of 
predictive coding, ix is exactlv recoverable fiom ir without numerical noise, given the few 
initial values of ix along with the predictor weights for each fiame. 

bits per sample, b p i ,  , which, in accordance with (l), is measured by 
After the first stage has produced ir, the second stage attempts to reduce the number of 
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With arithmetic coding it is possible to reduce bps, to bps,, the number of output bits per 
sample, with the latter close to the entropy of ir given by (3). As an illustration we take the 
results from the first data frame, that is, the encoding of the first K=lOOO samples of ir in Fig. 
6. 

1 1 1 I I I 

I I I I I 
I 1 I I I 

0 1 .2 3 4 5 6 
Sample no. x104 

-50 0 50 
Amplitude (ir) 

Figure 6. Residues of ix(0:59999) in Fig. 5 after predictive coding, with amplitude and 
power distributions. Frame size was K=lOOO; predictor size ranged from M=2 through M=8. 

The amplitude distribution for this first data frame is plotted in Fig. 7 .  The vertical 
scale isf(ir), the relative frequency of each value of ir. The circles represent the values of 
fir) for the data frame and the solid curve is the Gaussian envelope N(O,o,), where 0,=3.43 
is the measured standard deviation. Since ]irk]ma in this case is 13, we have bpsjr=5 in 
accordance with (4). 

entropy, H=3.788, is approximately that of a zero-mean Gaussian amplitude distribution with 
standard deviation uir, which is given approximately by Woodward [J6, Ref. 91 as 

In Fig. 7 the amplitude distribution of ir is seen to be approximately Gaussian, and the 

(5 )  
ETb 5 10g~/2ne0~ 2 = log2(4.1330,) = 3.825 

Therefore, we would expect the compression of ir in the first frame to be from bps,,=5 to 
around bps,=3.8 bits per sample. As a matter of fact, due to the finite frame size and the 
non-Gaussian points around ir=O, the actual value was even lower at bps, = 3.6 bits per 
sample. 

In general, the compressibility of a Gaussian variate has been shown to be between one 
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and two bits per sample over a wide range of air Ip6,J6]. These results for the first data 
fiame are typical of the other 59 fiames of ir in Fig. 6. 

Gaussian residues. l#nax=l3, sigma=3.43, H=3.788 
I I I I I I 

-1 5 -1 0 -5 0 5 10 15 
Amplitude (ir) 

Figure 7. Relative fiequency of occurrence of residues in the first frame of ir in Fig. 6; 
K=lOOO. Solid curve is the Gaussian envelope, N(O,a,), where 0,=3.43 is the measured 
standard deviation. H=3.788 is the entropy, measured as in (3). 

Finally, compression results for this example are summarized in Fig. 8 by comparing 
bits per sample, bps, , bpsb , and bps, , for all 60 fiames of the waveform. These results are 
typical for continuous instrumentation data in the sense that decorrelation in the first stage 
typically yields more compression than entropy coding in the second stage. The compression 
ratio for each fiame, CR in (2), is computed for each fiame using bps,=20, the number of 
bits per sample in (1) needed to store ix without compression, and plotted in Fig. 9. 

As noted under Compressibility, the compression measure used in Fig. 9 is a 
conservative measure not always used in the literature. For example, actual file sizes are 
sometimes used to compute the compression ratio, leading to results which are format- 
dependent, but which nearly always look more impressive than the results in Fig. 9. In the 
present example, the ASCII file sizes of different versions of the seismic waveform in Fig. 5 
are as follows: 

Original data file: ANMBHZ89.ASC 542,994 bytes 

PKZIP compression: ANMBHZ89.ZIP 223,534 bytes 

WINZIP compression: ANMBHZ89.WZP 195,888 bytes 

Sandia compression (ENCODS): ANMBHZ89.CMP 39,379 bytes 
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Figure 9. Compression ratio for each of 60 seismic data fiames, with bps,=20. 
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If we divide the original file size by the compressed file size, we get the compression ratio 

%m file size = 13.8 CR = 
Compressed file size 

This result looks more impressive than the results in Fig. 9, but it represents the same 
compression process. 

As a matter of interest, the sizes of "zipped" files using PKZIP, copyrighted 1989-1990 
by PKWARE, Inc., Glendale, WI, and WINZIP, copyright 1991-1994 by NicoMak 
Computing, Inc., Bristol, CT, both of which are widely used compression programs, are also 
given above. The comparison of the sizes of ANMBHZ89.ZIP and ANMBHzS9.WZP.with 
the size of ANMBHZ89.CMP is not meant to be a criticism of PKZIP or WINZIP, which are 
the best programs the author has found for general file compression. It is only meant to show 
that, for lossless compression of continuous waveforms, the two-stage process in Fig. 3 can 
offer real advantages over other methods. 

Conclusions 

Thus we conclude this short final report on the LDRD project to develop lossless 
waveform and image compression. All significant results are available in the literature listed 
in the Bibliography. Most of these papers, as well as compression and authentication codes 
in Fortran and a compression program in Cy are available fiom the author. 
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