Increasing the efficiency of the TOUGH code for running large-scale problems in nuclear waste isolation

PDF Version Also Available for Download.

Description

The TOUGH code developed at Lawrence Berkeley Laboratory (LBL) is being extensively used to numerically simulate the thermal and hydrologic environment around nuclear waste packages in the unsaturated zone for the Yucca Mountain Project. At the Lawrence Livermore National Laboratory (LLNL) we have rewritten approximately 80 percent of the TOUGH code to increase its speed and incorporate new options. The geometry of many requires large numbers of computational elements in order to realistically model detailed physical phenomena, and, as a result, large amounts of computer time are needed. In order to increase the speed of the code we have incorporated ... continued below

Physical Description

6 p.

Creation Information

Nitao, J.J. August 1, 1990.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The TOUGH code developed at Lawrence Berkeley Laboratory (LBL) is being extensively used to numerically simulate the thermal and hydrologic environment around nuclear waste packages in the unsaturated zone for the Yucca Mountain Project. At the Lawrence Livermore National Laboratory (LLNL) we have rewritten approximately 80 percent of the TOUGH code to increase its speed and incorporate new options. The geometry of many requires large numbers of computational elements in order to realistically model detailed physical phenomena, and, as a result, large amounts of computer time are needed. In order to increase the speed of the code we have incorporated fast linear equation solvers, vectorization of substantial portions of code, improved automatic time stepping, and implementation of table look-up for the steam table properties. These enhancements have increased the speed of the code for typical problems by a factor of 20 on the Cray 2 computer. In addition to the increase in computational efficiency we have added several options: vapor pressure lowering; equivalent continuum treatment of fractures; energy and material volumetric, mass and flux accounting; and Stefan-Boltzmann radiative heat transfer. 5 refs.

Physical Description

6 p.

Notes

INIS; OSTI as DE91000812

Source

  • TOUGH user`s workshop, Berkeley, CA (United States), 13-14 Sep 1990

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE91000812
  • Report No.: UCRL-JC--104756
  • Report No.: CONF-9009228--2
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 137894
  • Archival Resource Key: ark:/67531/metadc622317

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1990

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 16, 2016, 8:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nitao, J.J. Increasing the efficiency of the TOUGH code for running large-scale problems in nuclear waste isolation, article, August 1, 1990; California. (digital.library.unt.edu/ark:/67531/metadc622317/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.