
ORNL/TM-13657

Partitioning Rectangular
and Structurally

Nonsymmetric Sparse
Matrices for

Para1 le1 Processing

Bruce Hendrickson
Tamara G. Kolda

I This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available
from (615) 576-8401.

ailable to the public from the National Technical lnformation Service, U.S.
artment of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States nor any agency
thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

’

*

DISCLAIMER

Portions of this document may be illegible
in electronic innage products. Images are
produced from the best available original
document.

OFtNL/TM-13657

Coinputer Science and Mathematics Division

PARTITIONIIVG RECTANGULAR AND STRUCTURALLY
NONSYMMETRIC SPARSE MATRICES FOR PARALLEL PROCESSING

Bi,uce Hendrickson' and Tamara G. Kolda2

Parallel Computing Sciences Department
Sandia National Laboratories
Albuquerque, NM 87185-1110

Email: bah@cs.sandia.gov

C'3mputer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, T N 3783143367
Email: kolda@msr.epm.ornl.gov

,

Date Published: September 1998

Research supported by the Applied Mathematical Sciences Re-
search Program, Office of Energy Research, U.S. Department of
Energy, imaer contracts DE-AC05-960R22464 and DEACOC
94AL85000 with Lockheed Martin Energy Research Corp.

Prepared by
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6285

managed by
Lockheed Martin Energy Research Corp.

for the
U.S. DEPARTMENT OF ENERGY
under contract DEAC05-960R22464

mailto:bah@cs.sandia.gov
mailto:kolda@msr.epm.ornl.gov

Contents 4

4

1 Introduction . 1
2 Applications . 2
3 Parallel Matrix-Vector Multiplication . 4

3.1 Matrix-Vector Multiply (Row-Based) . 5
3.2 Matrix-Transpose-’\rector Multiply (Row-Based) 5
3.3 Analysis . 6

4 A Bipartite Graph Model . 7
5 Algorithms for Bipartite Graph Partitioning . 10

5.1 Alternating Partitioning . 10

5.3 Spectral . 12
5.4 Multilevel , . 13

5.4.1 Phase 1: Graph Coarsening . 13
5.4.2 Phase 2: Pxtitioning the Coarse Graph 14

6 ExperimentalResults . 15
6.1 LeastSquares . 16
6.2 Linea-rProgramming . 18
6.3 TruncatedSVD . 20
6.4 Preconditioned Lix tear Systems . 21

7 Conclusions., . 23
8 References . 24

5.2 Kernighan-Lin / F iduccia-Mattheyses . 11

5.4.3 Phase 3: U:ncoarsening and Refinement 15

8

b

4

PARTITIONING RECTANGULAR AND STRUCTURALLY
NONSYMMETRIC SPARSE MATRICES FOR PARALLEL PROCESSING

Eiruce Hendrickson and Tamara G. Kolda

Abstract
A common operation in scientific computing is the multiplication of a sparse, rectan-

gular or structurally nonsymmetric matrix and a vector. In many applications the matrix-
transpose-vector product is also required. This paper addresses the efficient parallelization
of these operations. Wc show that the problem can be expressed in terms of partitioning
bipartite graphs. We then introduce several algorithms for this partitioning problem and
compare their performance on a set of test matrices.

1. Introduction

Matrix-vector and 'matrix- transposevector products that repeatedly involve the same large,
sparse, structurally nonsymmetric or rectangular matrix arise in many iterative algorithms.
Examples include algorithms for solving linear systems, least squares problems, and linear
programs. To efficiently implement these types of methods in parallel, the nonzeros of the
sparse matrix must be distributed among processors in such a way that the computational
work per processor is balmiced and the interprocessor communication is low. This can usually
be achieved by an appropriate partitioning of the matrix. Specifically, given a structurally
nonsymmetric or rectangular matrix A, the key is to find permutations P and Q so that the
nonzero values of PAQ are clustered in the diagonal blocks as illustrated in Figure 1. As

Figure 1: Matrix before and after partitioning.

we show in $3, this nearlr block diagonal structure helps reduce the communication cost in
matrix-vector products. E'irthermore, by requiring that the block rows (or block columns) have
approximately the same number of nonzeros, the floating point operations are well balanced
among processors.l

~~~ ~ 

'Note that our approach is specifically targeted for sparse matrices. For dense matrices or sparse matrices 
with nonzero patterns that are difficult to  exploit, two-dimensional decompositions are typically used; see 



- 2 -  

Despite the utility of rectangular or structurally nonsymmetric matrix partitioning. little 
work has been done in this area. If the matrix is square and structurally symmetric, the problem 
can be expressed in terms of graph partitioning, and a number of good algorithms and software 
tools have been developed for this use [20, 25, 421. These methods can be used for partitioning 
a square, structurally nonsymmetric matrix A by considering the sparsity pattern of the A+AT 
matrix. But this trick is appropriate only if the matrix is nearly structurally symmetric. The 
square symmetric methods are not applicable to rectangular matrices. 

Previous attempts to address the general matrix partitioning problem include the work of 
Kolda [29] and an earlier report on this research [19]. In trying to accelerate the convergence 
of block iterative methods such as block Gauss-Seidel, O'Neil and Szyld [34] and Choi and 
Szyld [7] considered a closely related problem. Their PABLO and TPABLO algorithms were 
geared towards placing large matrix values into the diagonal blocks. 

In 33, we describe the matrix-vector and matrix-transpose-vector kernels and show how 
the partitioning affects communication. Further, we show that we only need to use the row 
partition to  maintain balance in the number of nonzeros per processor and consequently have 
some leeway in the column partition that we can exploit for other purposes. For example, in the 
case of preconditioned iterative methods for structurally nonsymmetric matrices, we can use 
this freedom to find a partition that is good both for the matrix and its explicit preconditioner. 
We discuss this further in 392-4. 

In 34, we describe the relationship between matrix partitioning and graph partitioning. An 
rn x n rectangular or structurally nonsymmetric matrix corresponds to a bipartite graph on 
m+n nodes with the number of edges equal to the number of nonzeros in the matrix. We show 
that the matrix partitioning problem can be described as a bipartite graph partitioning problem 
in which edge cuts are related to parallel communication and constraints on the partition sizes 
correspond to work load per processor. 

In $5, several algorithms for partitioning the bipartite graphs are presented. Modifications 
of the well-known spectral [36], Kernighan-Lin [27] /Fiduccia-Mattheyses [lo], and Multilevel [6, 
22, 25, 261 methods are given for the bipartite graph model. The modification'of the spectral 
method was previously introduced by Berry, Hendrickson, and Ftaghavan [5]. firther, the 
Alternating Partitioning method of Kolda [29] is presented; this method is specific to the 
bipartite case. 

Finally in $6, we measqe the performance of various methods for partitioning rectangular or 
structurally nonsymmetric matrices. We compare different methods on a collection of matrices 
from least squares, linear programming, truncated singular value decomposition (SVD), and 
preconditioned linear systems. Our results indicate that the best approach is generally the 
Multilevel Method with either Fiduccia-Mattheyses or Alternating Partitioning and Fiduccia- 
Mattheyses refinement. 

I 

2. Applications 

Matrix-vector products involving sparse, rectangular or structurally nonsymmetric matrices 
occur in a wide variety of numerical methods. One very important example is the solution of 
a nonsymmetric system 

Ax = b, 

Hendrickson, Leland, and Piimpton [23] or Lewis and van de Geijn [32]. 

c 



- 3 -  

with an iterative method such as BiCG [12] or QMR [13]. During each iteration, these methods 
require the computation of AT and ATs for some vectors T and s. To use the partitioned matrix, 
PAQ, we can solve 

( P A Q b  = Pb, 
where QTx = y. Note that permuting the rows and columns of a matrix changes its eigenvalues; 
however, because we do n,t know the exact role that eigenvalues play in these methods, we 
cannot predict whether the effect will be positive or negative. In this case, the number of rows 
and columns assigned to each partition must be equal so that the diagonal blocks of PAQ 
are square and the data layout of the vectors is correct for other parallel operations (like dot 
products). If A is structurally symmetric or nearly so, a symmetric partitioning scheme is likely 
more appropriate. 

Generally, iterative methods involve preconditioning. Suppose we have an explicit precon- 
ditioner such as an approaimate inverse M M A-l . (See Benzi and TAma [3] for a survey of 
approximate inverse preconditioners.) In that case, we need to find P and Q such that both 
PdQ and QTMPT NN (PAQ)-' are well partitioned. By well partitioned, we mean that (1) the 
communication costs are low, (2) the block rows of PAQ are balanced (i.e., have approximately 
equal numbers of nonzeror,), and (3) the block rows of QTMPT are balanced. Note that con- 
ditions (2) and (3) are stronger than merely requiring that the block rows of P ( A  + MT)Q are 
balanced, and these condiions are necessary because there is usually a synchronization point 
between the application oi the matrix and the preconditioner. Once a particular P and Q are 
determined, in the case of left preconditioning we need to solve 

(QTMPT)(PAQ)v = (QTWh 
where $I = QTx.  In essence, we need only reorder the variables according to QT throughout 
the iterative method. If A1 is a right preconditioner, we solve 

( P A Q ) ( Q ~ M P ~ ) ~  = ~ b ,  

where y = PM-'x. In this case, we reorder the variables throughout the method by P. 
Note that we may even u e  this idea when A and M are symmetric and a method such as 
(preconditioned) conjugat e gradients [16] is being used. 

Like iterative methods for linear systems, iterative methods for least squares problems re- 
quire numerous matrix-vector products, and in this case, the matrices are rectangular. Consider 
a system of the form 

min llA. - 412, 

where A is an m x n mamix with m > n. This problem can be solved by iterative methods 
such as LSQR [35] that require computations of the form Ar and ATs every iteration. Using 
the permuted matrix does not change the minimal value of the least squares objective function. 

Another situation in which A is rectangular arises in interior point methods for linear 
programming, 

min cTx 
s.t. Ax = b, 

x 2 0. 

Here A is a real m x n xratrix with m 5 n. At each iteration of the method, the next search 



- 4 -  

direction is computed by solving the set of equations 

where y is the dual variable and D is a diagonal matrix that changes each iteration. Alterna- 
tively, we may solve the normal equations, 

( A D - * A ~ ) A ~  = T. 

See Wang and O'Leary [43] for an algorithm that solves these equations iteratively as well as an 
overview of other such methods. When iterative solvers are employed, frequent multiplications 
involving A and AT are needed. Even when using direct methods, multiplies by A and AT 
are required to compute w and v or T at each iteration. Permuting A does not change the 
eigenvalues of either of the two systems mentioned previously. 

Lastly, computing the truncated SVD of a large sparse matrix A via a Lanczos procedure re- 
quires frequent multiplies by A and AT. This arises in, for example, latent semantic indexing for 
information retrieval [4], clustering for hypertext matrices [5], and geophysical applications [40]. 
Permuting A does not change its singular values, and the singular vectors of the original matrix 
are just permutations of those for the permuted matrix. 

3. Parallel Matrix-Vector Multiplication 

Since matrix-vector multiplications are ubiquitous numerical kernels, it is important to devise 
effective algorithms for their parallel execution. To perform this operation efficiently, we must 
evenly divide the computational load while requiring a minimum amount of communication. 
In this section we show how matrix partitioning can be used to obtain this objective for the 
matrix-vector and matrix-transpose-vector multiply operations. 

Suppose an m x n matrix A has already been reordered and partitioned into a block p x p 
structure, 

A11 A12 * * *  Alp 

A =  [A; A; ::: " 1 ,  

Apl 4 2  . * .  App 
where p is the number of processors. Here Aij is of size mi x nj, where xi mi = m and cj nj = n. We assume that most of the nonzeros are on the block diagonal as a result of the 
partitioning. 

We present algorithms for a row-based partitioning; that is, each processor is assigned a 
block row, and we assume that the mi's have been chosen in such a way that the number 
of nonzeros per block row is nearly equal. For now we assume nothing about the nj's. The 
algorithm we describe for computing Az is widely used; see, e.g., 1391. 

Analogous algorithms exist for a column-based partitioning. Specifically, if we have a matrix 
that is partitioned into block columns, we can simply work with the transpose of the matrix 
that is partitioned by rows. 



3.1. Matrix-Vector Multiply (Row-Based) 

For the row-based algorithm, processor i owns the ith block row of A, that is, 

To compute the product y ’= A s  in parallel, divide the vector s into conformal block format, 

where block xi is of length ni. Processor i holds zi. 
Consider the procedure from the point of view of processor i. First, a message is sent to 

each processor j # i for which Aji # 0. This message contains only those elements of xi 
corresponding to nonzero columns in Aji. While the processor waits to receive messages, it 
computes the contribution from the diagonal matrix block, 

The block Aii, while still sparse, may be dense enough to exhibit good data locality. Then, for 
each j # i such that Aij is nonzero, a message is received containing a sparse vector Zj that 
only has the elements of z; corresponding to nonzero columns in Aij, and 

is computed. (We assume that processor i already knows which elements to expect from 
processor j.) Finally, the ith block of the product y is computed via the sum 

yi = y!j’. 
j 

Block vi is of size mi. 

3.2. Matrix-Transpose-Vector Multiply (Row-Based) 

In the row-based method, to compute z = A*w, processor i holds vi ,  the ith block of v of size 
mi, and the ith block row of A. As before, the procedure is sketched from processor i’s point 
of view. First, the off-diagonal blocks are used to compute 

2:) = AZui, 

for each j # i for which A i j  # 0. Observe that the number of nonzeros in zjs is equal to the 
number of nonzero rows in A:, i.e., the number of nonzero columns in Aij. Next, processor i 
sends to each other processor j # i, the nonzero2 elements of .z:z), if any. While waiting to receive 

*Here we mean any elements that are not gupanteed to be zero by the structure of Ajj . Elements that are 
zero by cancellation are still communicated. 



- 6 -  

messages from the other processors, processor i computes the diagonal block contribution 

Next, from each processor j such that Aji # 0, it receives $), which contains only the nonzero 
elements of $). (Again, we assume that processor i already knows which elements to expect 
from processor j.) Finally, processor i computes the ith component of the product, 

Block zi is of size ni. 

3.3. Analysis 

We now present some facts for the row-based kernels; analogous facts exist for the column-based 
kernels. 

In both the matrix-vector and matrix-transpose-vector algorithm, a processor is responsible 
for the multiplication associated with the matrix blocks it owns. This leads to the following 
fact. 

Fact 1. The number of multiplies that processor i performs in either the matrix-vector or 
matrix-transpose-vector operations is equal to the number of nonzeros in block row i. 

Thus, the workload per processor is the same for both the matrix-vector and matrix- 
transpose-vector multiplies. If the partitioning process ensures that the numbers of nonzeros 
per block row are nearly equal, the computational workload per processor will be balanced. 

R e d  that a message goes from i to j in computing Az if Aji is nonzero, and only the 
elements of zi corresponding to nonzero columns in Aji are sent. This leads to the following. 

Fact 2. The number of messages sent by processor i in the matrix-vector multiply is equal to 
the number of nonzero blocks Aji with j # i. firther, the volume of messages sent by processor 
i is the sum of the number of nonzero columns in each Aji with j # i. 

Similarly, a message goes from i to j in computing ATw if Ai, is nonzero, and only the 
nonzero elements of zji) are sent. 

Fact 3. The number of messages sent by processor i in the matrix-transpose-vector multiply 
is equal to the number of nonzero Aij with j # i. firther, the volume of messages sent by 
processor i is the sum of the number of nonzero columns in Aij with j # i. 

Combining facts 2 and 3 yields the following three facts. 

Fact 4. The total number of messages sent in either the matrix-vector or matrix-transpose- 
vector multiply is equal to the number of nonzero off-diagonal blocks. 

Fact 5. If a message is sent from processor i to processor j in the matrix-vector multiply, 
then a message of the same length will be sent &om processor j to processor i in the matrix- 
transpose-vec tor multiply. 



I 
- I -  

This means that the miitrix-vector and matrix-transpose-vector multiplies share the same 
communication pattern with the direction of the messages reversed. 

Fact 6.  In either the matrix-vector or matrix-transpose-vector multiply, the total message 
volume is equal to the sum of the number ofnonzero columns in each off-diagonal block. 

As our numerical results in 56 show, reducing the total number of nonzeros in the off- 
diagonal blocks typically reduces the total message volume and the maximum message volume 
handled by a single processor. 

It is useful to observe that a single decomposition can lead to efficient matrix-vector and 
matrix-transpose-vector pmducts, and this helps facilitate parallelization of the applications 
described in $2. 

In the preceding discussion, we assumed that the mi’s are chosen so that the nonzeros per 
block row (and hence the work per processor) are balanced. We made no assumption about 
the nj’s, and we can exploit this freedom in several ways. 

1. Choose the nj’s to minimize communication in the matrix-vector products. This is ac- 
complished by leavinl; the nj’s unconstrained. 

2. Choose the nj’s to each be nearly equal, which would balance BLAS-1 operations on the 
n-long vectors. These operations are a component of most iterative methods. 

3. As discussed further i n  the next section, if we have an approximate inverse preconditioner, 
say M = A-l, we can simultaneously partition A and M. Our partitioned matrices are 
given by PAQ and QTMPT. We can choose the mi’s.to balance the work associated 
with A and the nj’s i,o likewise balance the effort of computing with M. 

As mentioned earlier, i L  matrix can be partitioned by rows or columns, whichever leads 
to ljetter performance. For example, consider a row partitioning of a matrix that has dense 
rows but no dense columnr,. It may be difEcult to balance the load since a single processor is 
saddled with all the nonzei-OS in the dense row. Furthermore, the processor owning the dense 
row will need to receive a large amount of information to compute its contribution to Az. 
Partitioning the matrix by columns resolves these problems. Not only is the load balancing 
problem easier, but the communication volume now depends on the nonzero rows in the off- 
diagonal blocks. A dense row will contribute only one nonzero row to any block that contains 
it, so the communication volume will generally be reduced. 

4. A Bipartite Graph Model 

As discussed in $3, the kej to an efficient parallel matrix-vector multiplication algorithm is in 
the partitioning of the rows and columns of the matrix. For structurally symmetric matrices, 
this problem has been well studied and is generally phrased in terms of graph partitioning. 
The structure of an n x z. structurally symmetric matrix A = [aij] can be described by an 
undirected graph G = ( V , L )  with V = (1,2,. . . , n )  and ( i , j )  E E if and only if aij (and hence 
aji) is nonzero (see Figure 2). Vertices and edges can have weights if desired. A partitioning 
of the vertices of 6 corresponds to a symmetric partitioning of the rows and columns of A. For 
example, a division of the vertices into 2 sets induces a block 2 x 2 structure for the matrix. 
Each edge that crosses between the two sets corresponds to a nonzero value in the off-diagonal 
blocks of the matrix. The standard approach to structurally symmetric matrix partitioning is 



- 8 -  

1 2 3 4 5  

x x x  
- 

2 x x  
x x  

' rx :I: x x x 
5Lx x x x - 

Figure 2: Graph of a symmetric matrix. 

to try to minimize these cross edges, while maintaining some balance on the number of rows 
(or the number of nonzeros) in the two sets. This graph bisection problem is known to be 

This approach is not well suited to rectangular or structurally nonsymmetric matrix par- 
titioning. If the matrix is rectangular, then the graph model does not apply. If the matrix is 
square, the standard graph model can only encode a symmetric structure. A directed graph 
model can encode nonsymmetry in a square matrix, but more generally, these approaches force 
the row partition to be identical to the column partition. Although this is reasonable for struc- 
turally symmetric matrices, it is unnecessarily restrictive for structurally nonsymmetric ones; 
that is, a better partition may be achieved by allowing the rows and columns to be partitioned 
separately. 

For the rectangular or structurally nonsymmetric case, an alternate graph model of the 
matrix can be used. The nonzero structure of an m x n matrix A = [aij] corresponds to  
an undirected bipartite graph 6 = (R,C,E) with R = { r l ,  ..., rm), C = {CI ,..., G}, and 
( r i , c j )  f & if and only if aij # 0 (see Figure 3). Note that no edge connects two rows or two 
columns. If desired, edges and vertices can have weights assigned to them. A partitioning of 

NP-hard [14]. 

1 2 3  
1 x  .:Ix 4 1 
5 x  

Figure 3: Bipartite graph of a matrix. 

the vertices in R induces a division of the rows of the matrix; likewise, a partitioning of the C 
vertices corresponds to a division of columns. Unlike the standard graph model, the bipartite 
model allows a different number of row and column vertices and can represent nonsymmetric 
structure. Further, the row and column partitions are separate. 

More formally, we propose the following bipadite gmph partitioning problem. Given a bipar- 
tite graph Q = (R, C, E )  with weighted edges and vertices, we wish to find p disjoint partitions 
Pi E Ri U Ci with R, E R and Ci C such that the following three criteria are satisfied. 

1. The total weight of edges crossing between partitions is minimized. 

2. There is a bound (possibly infinite) on the maximum difference in total row vertex weight 
I 



I .  

between any two part tions. 

3. There is a bound (possibly infinite) on the maximum difference in total column vertex 
weight between any two partitions. 

This is a generalization of the standard graph partitioning problem. 
The matrix partitioning problem from the matrix-vector multiply in $3 can be expressed in 

the bipartite graph partitioning model. Suppose we want to divide the matrix over p processors. 
As discussed in $3 this can he accomplished by either a row-based or a column-based partition. 
Without loss of generality, we will focus on the row-based option. Assign each vertex rt E R a 
weight equal to the number of nonzeros in row i of A. This weight corresponds to the number 
of multiplication operations a processor will have to perform if it owns this row. Let edges and 
column vertices have unit weights. Now apply bipartite graph partitioning in so that (1) the 
total number (or weight) of edges crossing between the partitions (Pi = R, U Ci, i = 1, . . . , p )  
is minimized and (2) the total vertex weight in each set Ri is approximately equal. The 
first constraint leads to low communication while the second ensures load balance. Such a 
partitioning corresponds tcl a nearly block diagonal structure for the matrix. Note that no 
constraints on column balance are necessary; that is, the bound in condition (3) of the bipartite 
graph partitioning problem is infinite. 

Several caveats are necessary. First, with weights on the vertices, perfect load balance may 
be difficult or impossible tci achieve. In practice it is much simpler to merely require that the 
difference between the total vertex weights in Ri and ' R j  be less than or equal to the maximum 
weight of any single row vertex. Second, with no restrictions on the column vertices we can 
divide them in any way-pttrhaps'even assigning no columns to a given partition if that is what 
is best for the communication pattern. Third, as discussed in $3, the communication volume 
induced by a partition is not equal to the number of graph edges cut but rather to the number 
of cblumns in the-off-diapxiJ blocks that have nonzeros in them. This column count can 
be expressed in the graph model. Specifically, each of these nonzero columns corresponds to a 
vertex with neighbors in another partition. However, this more accurate metric is more difficult 
to model and minimize than the number of edges cut, so we choose to focus on edge cuts as an 
approximation. The same approximation is used (although not widely acknowledged) in the 
standard graph partitioning model. Lastly, the edges are each given weight one, but other edge 
weighting schemes are possible. For example, we could weight an edge from r; to cj  by la;jl if, 
for some reason, we want t o  encourage large matrix values to be in the block diagonal. 

By not constraining t h e  partition of the columns, we allow for whatever partition leads 
to the minimal number of edge cuts. Other possible objectives are discussed in 53.3. One 
alternative is to  balance the BLAS-1 operations associated with the n-long vectors. This can 
be accomplished by setting the weight of each column vertex to one and adding the additional 
constraint (3) that the difhrence in total vertex weight between any pair Ci and C j  be no more 
than one (i.e., the maximum vertex weight in C). 

The other objective mmtioned in $3.3 is to enable efficient matrix-vector products for two 
matrices simultaneously, in the case when an approximate inverse preconditioner is employed 
in an iterative method to  solve a h e a r  system. Specifically, for square A and M ,  we want to find 
P and Q such that PAQ and QTMPT (or equivalently, PMTQ)  are both well partitioned. We 
can address this by partitioning an appropriately weighted bipartite graph. Before there was 
an edge from ri to cj ,  if a;j was nonzero and each edge was weighted as one. Now, ( r , ,c j )  E E 



- 10 - 

if either ai, or mji is nonzero. Further, the weight of the edge from ri to cj is 

2 if aij # 0 and mji # 0, 
1 if aij # 0 xor mji # 0. 

zU(T1,Cj)  = 

The weight of vertex cj is equal to the number of nonzeros in column j of lllT (or row j of M ) .  
We add the condition (3) that the difference in total vertex weight between any pair C, and 
C j  be no more than the maximum vertex weight in C. The solution of the resulting bipartite 
graph partitioning problem produces a balanced row decomposition of A and a balanced column 
decomposition of M T .  The weighted cut edges reflect the total communication volume required 
by the two matrix-vector products. 

5. Algorithms for Bipartite Graph Partitioning 

Now that the rectangular and structurally nonsymmetric matrix partitioning problems have 
been modeled using a bipartite graph, we need algorithms €or partitioning such graphs. In 
this section we propose several algorithms that are adapted from techniques for the standard 
graph model and one that is specific to bipartite graphs. Each method partitions the bipartite 
graph into two sets (PI = R1 U C1 and 732 = R2 U Cz). Any power-of-two number of sets can 
be generated by dividing the two sets recursively. And further, any number of sets can be 
produced this way by a simple generalization of the partitioning problem to generate sets of a 
specified size ratio. 

5.1. Alternating Partitioning 

The alternating partitioning method, introduced by Kolda [29], is specific to bipartite graphs. 
Given a column partition, the algorithm produces the best possible row partition. It then 
takes this new row partition and generates the best possible column partition. The algorithm 
alternates back and forth between rows and columns until no further improvement is observed. 
The initial partition can be random, or it can be the output of some other algorithm. 

Given a partitioning of the column vertices, the optimal row vertex partition can be corn- 
puted in the following manner. Let s: denote the total edge weight between row vertex i and 
adjacent column vertices in partition 1; similarly, let s; denote the total edge weight between 
row vertex i and adjacent column vertices in partition 2. Then si E sr - sT is the gain asso- 
ciated with assigning node i to partition 1. (Conversely, -si = S; - s t  is the g&n associated 
with assigning node i to partition 2.) Our goal is to  assign the vertices to sets in such a way 
that the total gain of vertices assigned to partition 1 is maximized. In the unconstrained or 
constrained with unit weights case, this can be done optimally as stated in the following two 
theorems. 

Theorem 1. Suppose that the column partition is fixed and that there is no constraint on the 
row partition. Let the si’s (as described above) be sorted so that 

Select j *  so that for dl j 2 j * ,  sij is positive, and for all j < j * ,  sij is nonpositive. Then an 
optimal assignment of the row vertices is 731 = {ri l l . .  . , Tij. } and R2 = {rij*+ll..  . , T ~ } .  



- 11 - 

This result follows fron the observation that each row is placed in its optimal partition. 
Note that the optimal solution is unique unless one or more si, values is zero. 

When the total row vel tex weight in each partition is constrained, we can generalize the 
algorithm in a natural way. Choose a dividing point 3 as close as possible to j *  that satisfies the 
bounds on the total vertex weight. If the row vertices are unit weighted (or equally weighted), 
then this approach is optin: al, as shown by the following theorem. 

Theorem 2. Suppose that the column partition is fixed. Let the sz ’s be sorted so that 

s,, 2 si2 2 . . f 2 sa,. 

Select j *  so that for all j 2 j* , st, is positive, and for all j < j*, sa> is nonpositive. Let 3 be the 
closet index to j *  that satisfies the balance constraint. If the row vertices have equal weights, 
then an optimal assignment of the row vertices is R1 = {r,, , . . . r - } and Rz = {rZj+, , .  . . , T,,,,}. 

Proof. By Theorem 1, j* is an optimal assignment if there are no balance constraints. The 
choice of 3 ensures that a niinimal number of vertices are placed in a set for which their gain is 
negative. Further, the verkces with the smallest negative gains are chosen. 0 

In the general weightec and constrained case, the problem is equivalent to the Knapsack 
Problem which is known to  be NP-hard [15]. 

Let I&/ denote the number of edges in 6 or correspondingly the number of nonzeros in A, and 
let 1721 and IC1 denote the number of row and column vertices. An iteration consists of finding a 
row partition given a fixed column partition and then finding a column partition given a fixed 
row partition. It is not hard to show that the complexity of each iteration is O((Z( + (Rl+ IC/). 
The computational steps in an iteration are the generation of gain values for each vertex and 
the determination of j* (01.3) via a weighted median procedure. Computing the gains for all 
vertices requires an additilm or subtraction for each edge, at a cost of O(l&l). Finding the 
weighted median of a set cb k values requires O(k) operations (see, for instance, problem 10.2 
of [8]), and it is used on a. set of I’Rl gains and then a set of IC1 gains. Our implementation 
actually uses a simpler, buiary search algorithm for median finding. Although it works well in 
practice, it is not guaranteed to run in Iinear time. 

The number of iterations is variable but guaranteed finite [29]. Alternatively, a maximum 
allowable number of iterat pns can be specified., ’ 

This method was deriked from the Semi-Discrete Decomposition that was introduced by 
O’Leary and Peleg [33] for image compression and that was also used for latent semantic 
indexing in information retrieval by Kolda and O’Leary 128, 31, 301. 

’ ’> 

5.2. Kernighan-Lin / Fiduccia-Mattheyses 

The Kernighan-Lm [27] all:orithm is a widely used method for improving a graph partition. As 
with alternating partitioning, the initial partition can be random, or it can be the output of 
another algorithm. A refoxnulation by Fiduccia and Mattheyses [lo] improved the performance 
of the basic approach. 

The Fiduccia-Mattheyses (FM) algorithm consists of a sequence of passes over the graph 
in which vertices are moved from one partition to the other. Move selection is based on the 
gain concept described in $5.1, but gains are computed relative to the partition the vertex is 
currently in. The vertex with the largest gain value is the one whose move will maximally 

* reduce the number of edges cut. Moves worsen the quality of the partition are allowed, which 



- 12 - 

enables the algorithm to escape local minima. Moves are permitted only if they do not violate 
the balance constraints or if the set the vertex is leaving is larger than its goal weight. Within 
a pass, vertices are allowed to move only once to avoid infinite looping. The basic structure of 
a pass is as follows. 

1. Mark all vertices as eligible. 

2. For each vertex, compute the gain associated with moving it from its current partition to 
the other; the gain may be negative. 

3. Among moves that improve the balance criteria or that at least do not violate the balance 
constraints, select the eligible node with the greatest gain. If there are no further eligible 
nodes, exit. 

4. Move the selected node to the other partition, mark it as ineligible, and update the gains 
of all of its neighbors. 

5. If this is the best partition yet seen, save it. 

6. Go to Step 3. 

Fiduccia and Mattheyses observed that careful use of data structures allows a single pass 
to be performed in linear time. A priority queue can be used to keep track of the gain d u e s  
for each type of move (i.e., from set 1 to set 2 or from set 2 to set 1). A bucket sort can be 
used to compute the initial gains and to efficiently update the gain values. In this way, a pass 
through the outer loop can be implemented to run in time O((&( + (R( -t (Cl). See Fiduccia and 
Mattheyses [lo] for a detailed discussion of data structures. 

We have adapted this basic algorithm to address the bipartite graph partitioning problem. 
The key change is’that there are now four types of moves: rows or columns can move from 
either the first or second set. We maintain a priority queue for each of these move types. To 
select a vertex to move, we examine the first item in each of the four queues and choose the 
move with the highest gain that obeys the balance considerations in Step 3. In this way, we 
ensure that the runtime is linear in the size of the graph. 

In practice the performance can be improved by stopping the outer loop when a new best 
partition has not been encountered in a while-say within the past 50 moves, for instance. 
Another optimization (not in our current implementation) is to evaluate the gain values lazily. 
In the standard FM algorithm, the gain for every vertex is calculated before each pass. The 
gains are updated as the sequence of moves changes them. In the lazy implementation, only the 
gain values of vertices with neighbors in the other partition are computed before each pass. If 
a vertex moves to the boundary (i.e., one of its neighbors moves to the other set), then its gain 
is calculated and kept updated from then on. If we have a reasonably good starting partition, 
then the number of vertices on the partition boundary should be small, and most gains wil l  
never need to be calculated. For multilevel algorithms (like the approach described in 55.4), 
FM is used to improve partitions that are already fairly good. In this setting, lazy evaluation 
can significantly reduce execution times [22]. 

5.3. Spectral 

A popular algorithm for standard graph partitioning is spectral bisection, which uses an eigen- 
vector of the Laplacian matrix associated with the graph [21, 36, 381. We can apply spectral 



- 13 - 

partitioning to a rectangulu or structurally nonsymmetric problem by first symmetrizing it. 
Given a bipartite graph == (72, C, E )  of a matrix A,  form the corresponding structure matrix 
A = [a*j] (ai, is nonzero if ( ~ i , c j )  E E and its value is equal to the weight of the edge), and 
then form the symmetric (713 + n) x (m + n) matrix 

A = [  0 2  ] 
AT 0 

The symmetric A has a well-defined Laplacian matrix that can be used for partitioning. The 
symmetric partitioning of di can then be used to generate both row and column partitions of 
A. This approach was used by Berry et al. [5]. 

In order to apply spectral partitioning, the Laplacian of A, 

L = D - A ,  

is computed where D = diag(d1, dz, . . . , dm+n} and di = xi &,. The matrix L is symmetric 
and positive semidefinite. Ikthermore, we have the following. 

Theorem 3 (Fiedler [ll: ). If the graph of A is connected, then the multiplicity of the zero 
eigenvalue is one. 

Observe that A and A hale the same graph. Let w denote a Fiedler vector of L, that is, an 
eigenvector corresponding to the smallest positive eigenvalue of L. Let u denote the first rn 
and the last n elements of w. Note that u corresponds to rows of A and v to columns. Now 
sort the elements of u and v so that 

and 
vj1 2 Vj2  2 * 2 ~ j , .  

This ordering of the elemmts of u can be used to partition the rows of A. Simply split this 
sorted list into high-valued and low-valued entries to satisfy the balance criteria. The same 
algorithm applied to v partitions the columns of A. 

For the standard graph partitioning problem, spectral bisection generally produces good 
partitions, but the eigenvector calculation is expensive. 

5.4. Multilevel 

The most popular methods for standard graph partitioning use a multilevel approach [6,22,25, 
261. A multilevel method citarts with a graph that has a large number of vertices, successively 
merges vertices until it h a  a coarse graph with a small number of vertices (phase l), partitions 
the coarse graph (phase f), and successively uncoarsens the graph, periodically refining the 
partition step (phase 3). We have adapted this general framework to the bipartite graph 
partitioning problem. 

5.4.1. Phase 1: Graph Coarsening 

Let G = (R,C,&) be the current graph. We want to form a smaller graph = (e,C-,t) by 
merging pairs of vertices of 0. Row vertices merge only with row vertices, likewise for column 



- 1 4 -  

vertices. The following procedure determines which row vertices to pair and eventually merge. 

1. Mark all row vertices as eIigible. 

2. Choose an arbitrary eligible row vertex, say T I .  If no more row vertices are eligible, the 
pairing is complete. 

3. Find an eligible row vertex r3 with the property that some column vertex is adjacent to 
both ri and T ~ .  If no such row vertex exists, mark T, as ineligible and return to Step 2. 

4. Slate vertices T, and r3 to be merged, and mark both as inelzgible. Return to Step 2. 

An analogous procedure is used to determine the column pairing. 

vertex is adjacent to more than one edge in t?. A matching 
added to E without destroying the matching property. 

Given a set of vertices V and edges E,  a matching is a subset of edges C & such that no 
is maximal no more edges can be 

Theorem 4. I f  A is. the matrix associated with 9, then the row pairing algorithm identifies 
a maximal matching among edges of the (symmetric) graph of AAT. (Similarly, the column 
pairing constructs a maximal matching among edges of the graph of ArA.) 

Proof. Recall that ajj is nonzero if and only if ( r i , C j )  E E.  Element ( i , j )  of AAT is nonzero 
if and only if vertices ri and rj have a column neighbor in common. Thus, the above' process 
serves as a greedy algorithm for growing a matching in the graph of AAT. A greedy algorithm 
generates a maximal matching since, by construction, any unmatched row has no other rows it 
can pair with. 

Theorem 5. Let H be the matrix with unit values that has a nonzero structure corresponding 
to S. The cost of the row-pairing algorithm is O(lHTelf + 1721). (Similarly, the cost of the 
column-pairing algorithm is O(IHel; + ICl).) 
Proof. All the work in the algorithm costs U((R1) except for the search for the paired row r j  
in step 3. This step can involve examining all paths of length 2 in the graph. As argued in 
the proof of Theorem 4, each such path will contribute a unit value into H H T .  The number of 
such paths will thus be the total value of all the entries in HHT;  that is, eTHHTe = IH*el;. 0 

Once all the pairings have been determined, the pairs are merged together. Suppose & 
is the result of merging ri and T j ,  then the weight of & is the sum of the weights of ri and 
rj .  There is an edge between i k  and 61 if any of their constituent vertices were adjacent in G 
and the weight of the edge is the sum of all the weights of the edges between their constituent 
vertices. This is analogous to adding the corresponding row and column pairs in A to  form A. 

The coarse graph maintains the bipartite structure of the original graph and has about half 
as many vertices. To further coarsen, the process is repeated until the graph has only a small 
number of vertices, say 100. If at any point too few rows and columns are paired, the coarsening 
procedure terminates. 

5.4.2. Phase 2: Partitioning the Coarse Graph 

Once a small enough bipartite graph has been generated, it is partitioned. Any method can be 
used; and if the graph is small, the quality of the final answer does not seem sensitive to this 
choice. In our implementation, we have chosen to use a random partition, 



- 15- 

5.4.3. Phase 3: Uncoarscning and Refinement 

In phase 3, the mergings fi.om phase 1 are successively ‘L~ndone.77 If coarse vertex i;k is in 
partition 1, then its two ccinstituent vertices, T* and T ~ ,  are in partition 1. Before the next 
“undo” step, a refinement can be performed. In the course of the refinement, for example, ~i 

may move from partition 1 to partition 2. The “undo” steps continue until the original graph 
is obtained. 

For refinement, we have experimented with three different options: alternating partition- 
ing from $5.1, Fiduccia-Mattheyses from $5.2, and a combination of alternating partitioning 
followed by Fiduccia-Mattheyses. 

6. Experimental Results 

The software is a modfica;ion of the Chaco package (written in C) developed by Hendrick- 
son and Leland [20] for partitioning structurally symmetric matrices. All calculations were 
performed on a 300 MHz Pentium I1 with 128 MB memory unless otherwise noted. 

Table 1 lists the methads that are tested. The partitioning is done recursively; that is, 
first the vertices (rows and columns) are partitioned into two sets, then each of those sets are 
partitioned into two sets, ;md so on until we reach the desired number of partitions. If we 
perform, for example, a row-based partition, each time we split a set into two partitions we 
require that the difference i n  the total row vertex weight in each partition be less than or equal 
to the maximum weight of any single vertex in the set. 

The natural partitioning (Natural) is a simple partition based upon the ordering the matrix 
had when it was given to us; often those orderings are meaningful. In the row-based case with 
no constraints on the coluinns, for example, the ordering of the rows and columns are fixed, 
but we still need to construct a row partition that obeys the balance constraints and a column 
partition that minimizes communication. This is done recursively; that is, first the nodes are 
partitioned into two sets, h e n  each of those sets are partitioned, and so on. 

The Fiduccia-Mattheyses (FM) and alternating partitioning (AP) methods require some 
initial partition. Some experimentation convinced us that the methods work best when FM is 
initialized with a natural partition and AP with a random partition, so all further runs were 
performed in this way. The spectral method (Spectral) uses the multilevel Rayleigh Quotient It- 
eration/Sjymmlq eigensolver [l] from the Chaco partitioning software [20]. The multilevel (ML) 
algorithms divide the coarsest graph randomly and use various refinement strategies: Fiduccia- 
Mattheyses (FM), Alternating Partitioning (AP), and Alternating Partitioning followed by 
Fiduccia-Mattheyses (APi -FM). We handle disconnected graphs specially in all cases except 
the natural partitioning and Fiduccia-Mattheyses (because we use the Natural ordering to gen- 
erate the initial partition in this case) by identifying all the connected components, assigning 
components to partitions in a greedy fashion, and only partitioning what remains. The desired 
number of coarse row and column vertices for the multilevel methods is 100. Refinements were 
performed at every other Leration of the uncoarsening phase. 

The test matrices were gathered from the various applications discussed in $1 (see Table 2). 
The two items in the last row of the table refer to a matrix and its preconditioner, as is discussed 
in 6.4. Dense rows and columns are noted because that will affect whether the partitioning is 
row- or column-based. We consider a row or column to be dense if more than 1/32 of its values 
are nonzero. 

For each test matrix, WIJ show two tables. The first table details the communication pattern. 



- 16 - 

Abbreviation 
Natural 
FM 

Method 
Natural Ordering 
Fiduccia-Matthevses 

I AP I Alternatine Partitionine I 

Matrix Application Rows 
pig-large Least Squares 28254 
Die-verv Least Souares 174193 

Table 1: Partitioning methods. 

Columns NNZ Density Dense? 
17264 75018 1.5e-4 

105882 463303 3.7e-4 - 
- 

dflOOl I Linear Program 
Amatrix Linear Program 
ue1998 nuncated SVD 
me.mplus Preconditioned 

6071 12230 35632 4.8e-4 1 Row 
123221 141344 1437692 8.3e-5 72 Rows 
719736 96300 27546437 4.Oe-4 1672 Cols 
17758 17758 99147 3.le-4 - 

precond 1 Linear System 1 1 76372 1 2.4e-4 1 - I 1 
Table 2: Test matrices. 

The Edge Cuts column lists the number of nonzeros outside the block-diagonal, that is, the edges 
in the bipartite graph that are cut by the given vertex partition. The Part Time column lists 
the time (in seconds) to compute the partition. The Total Msgs and. Totd VoI columns list, 
respectively, the total number of messages and total message volume for computing either Az 
or dTv. (Recall from Facts 4 and 6 that those values are equal for Ax and ATv.) The M m  
Msg and Max VoZ columns list, respectively, the maximum number and maximum volume of 
messages handled by a single processor in the computation of Ax or ATv, incoming or outgoing. 

The second table for each matrix lists the block partition information. We have partitioned 
these matrices to balance the number of multiplies per processor, that is, the number of nonzero 
matrix elements per processor. Each processor holds one block row or one block column. 
Columns 2-5 l i t  the details for the Block Rows. The Min Rows and Mm Rows list, respectively, 
the minimum and maximum number of rows in' any block row. The Min NZ and M u  IVZ 
columns list, respectively, the minimum and maximum number of nonzeros in any block row. 
Although the numbers,of rows owned by processors may vary significantly, variation in the 
number of nonzeros should be small when the partition is row-based since this balances the 
computational work. The next four columns list analogous values for the Block Columns. 

We choose the number of processors, p ,  in each case so that the number of nonzeros per 
processor is 10,000, give or take a factor of three. 

6.1. Least Squares 

The pig-large and pig-very matrices are from least squares problems relating to pig breeding 
data [18, 241 and were obtained from Duff [9]. 

The pig-large matrix is of size 28,254 x 17,264 with 75,018 nonzeros. 
The results of row-based partitioning the pig-large matrix over eight processors are given 

in Tables 3 and 4. The natural partitioning takes a small amount of time to compute (0.21 



- 17 - 

Cuts Time Mses Vol Mses Vol 
Natural 
Fhl 
AP 
ML-FM 
ML-AP 
ML-AP+F 
SDectral 

Table 3: Communication pattern for row-based partitioning of the pig-large matrix on eight 
processors. 

Table 4: Block information for the row-based partitioning of the pig-large matrix on eight 
processors. 

seconds) because the matiix still must be divided in such a way that each block row has 
approximately the same number of nonzeros. Notice that the natural partitioning requires 
the fewest messages (32) but the highest total volume (21,172). Also note that the minimum 
number of columns in a blclck is zero, which means that the processors with zero columns have 
no parts of the vector z in the Az computation. Those processors will not have any messages 
to send nor any diagonal component (Ajizi) to compute and will be idle until they receive 
messages from the other pi~ocessors. 

In contrast, the various partitioning methods increase the total message count to at or near 
the maximum of 56 but drastically reduce the total message volume (by a factor of more than 
nine in the best case) and the maximum volume handled by a single processor (by a factor 
of more than 12 in the blest case). Further, the partitionings yield more balanced column 
partitions even though no constraint was used. Of course, the number of nonzeros handled by 
each processor is about equal as required. In fact, the number of nonzeros handled by a single 
processor varies by far les: than 1% as we can see by looking at the minimum and maximum 
number of nonzeros in eadi block TOW. 

The multilevel-AP+Fhl (MLAP+FM) method yielded the best partitioning and required 
about 5 seconds of procesring time, on par with the other methods. In general, the multilevel 
methods yielded the best total volume and maximum single processor volume. The FM method 
was the fastest partitioning method but did not reduce the message volume as much as the 
other methods. The spectral method was the slowest method by a factor of more than 30 but 
did not produce the best partition. 

Recall that our methods attempt to find partitionings that minimize the number of edge 



- 18 - 

cuts. This does not correspond exactly to total message volume but is merely an approximation. 
On this problem, notice that the reduction in edge cuts corresponds roughly to the reduction 
in total message volume. For example, the AlL-AP+Fk method has the fewest edge cuts as 
well as the least communication volume. 

Table 5: Communication pattern for row-based partitioning of the pig-very matrix on 32 
processors. 

Table 6: Block information for the row-based partitioning of the pig-very matrix pn 32 pro- 
cessors. 

The pig-very matrix is of size 174,193 x 105,882 with 463,303 nonzeros. Tables 5 and 6 
show the results of partitioning this matrix row-wise over 32 processors. In this case we do not 
show results for the spectral method because it was too time consuming. 

The results are very similar to the results obtained for the pig-large matrix. There is a 
clear correspondence between edge cuts and total message volume. The multilevel methods 
yield the best partitions, in the best case reducing the total message volume by a factor of 
eight. The maximum message volume handled by a single processor is decreased by a factor of 
more than 13 in the best case at the cost of about three times more messages. 

The natural partitioning seems promising in terms of message count, but the maximum 
message volume handled by a singIe processor is more than that handled by all 32 processors 
for the multilevel (ML) partitionings. 

6.2. Linear Programming 

The 6,071 x 12,230 dflOO1 matrix is a linear programming constraint matrix with 35,632 
nonzeros. This matrix was obtained from Netlib.3 The matrix contains one dense row and so 
was partitioned column-wise. 

3http : //-.netlib. org/lp/ 



- 19 - 

Methoc 

Natural 

ML-FM 
ML-AP 
ML-AP+E 
Spectral 

Table 7: Communication pattern for column-based partitioning of the df 1001 matrix on eight 
processors. 

Table 8: Block information for the column-based partitioning of the df 1001 matrix on eight 
processors. 

Tables 7 and 8 show the results of partitioning the df 1001 matrix over eight processors. 
The original matrix does not have much structure, and the only reason the total number of 
messages for the Natural partition is only 44 (v. 56) is that some partitions contain no rows. 
In the best case we can reduce the total message volume by a factor of more than three and 
the maximum message volume on a single processor by a factor of more than eight. The block 
columns are very balanced in terms of the number of nonzeros per block. The block rows are 
reasonably balanced for the FM and multilevel (ML) methods although this was not enforced 
by any constraint. Again we can observe that edge cuts corresponds to total message volume. 

Table 9: Communication pattern for column-based partitioning of the Amatrix matrix on 128 
processors. 

The 123,221 x 141,344 Amatrix was o b t e e d  from Rothberg [37]. This matrix has 1,437,692 
nonzeros and contains 72 dense rows. 



- 20 - 

4 

Table 10: Block information for the column-based partitioning of the Amatrix matrix on 128 
processors. 

Tables 9 and 10 contain the results of a column-based partitioning of this matrix over 
128 processors. This is an interesting partitioning problem because even though all of the 
partitionings reduce the edge cuts by at least 25%, the total message volume is not reduced 
much and in some’cases (AP, MGAP, MGAP+FM) even increases. Thus for this problem, 
the assumption that edge cuts correlate with communication volume is invalid. Despite this, 
the partitioning is still beneficial because it reduces the total message volume handled by a 
single processor by a factor of five in the best case and even decreases the maximum number 
of messages that any processor handles. Further, the FM and AP methods do better than 
the multilevel methods in that they have a smaller total number of messages, approximately 
the same total message volume, a smaller number of maximum messages per processor, and 
approximately the same maximum volume per processor. Further, computing the partitionings 
for the FM and AP methods is faster than for the multilevel methods. 

6.3. Truncated SVD 

The 719,736 x 96,300 we1998 matrix with 27,546,437 nonzeros is used in a geophysical appli- 
cation where a truncated SVD must be computed (see Vasco, Johnson, and Marques [40]); the 
matrix was provided by Vasco and Marques [41]. This matrix has 1672 dense columns and so 
was partitioned row-wise. Because of the size of the matrix, the problem was run on an SGI 
Onyx with two processors and six gigabytes of memory, so the timings cannot be compared 
with the timings of the other problems. 

c 

Table 11: Communication pattern for row-based partitioning of the we1998 matrix on 1024 
processors. 

In Tables 11 and 12, we show the result of partitioning we1998 over 1024 processors. The 
situation is almost the opposite of that for Amatrix. The number of edge cuts is only modestly 



- 21 - 
, 

Natural 

ML-FM 

MGAP+FM 
ML-AP 

Table 12: Block information for the row-based partitioning of the we1998 matrix on 1024 
processors. 

reduced, but the total message volume is halved by every partitioning method. The total 
number of messages goes up by a factor of about 125, depending on the method, but the 
maximum number of messa,ges handled by a single processor is actually reduced by about 20%, 
and the maximum volume handled by a single processor is reduced by a factor of about 400. 

The block rows are very evenly divided with each containing about 27,000 nonzeros. The 
block columns, on the other hand, are not so even, with some blocks being assigned no columns. 
However, in the natural partitioning one partition has 40% of the columns and 7% of the nonze- 
ros. Since the partition is row-wise, this has no impact on load balance but leads to the very 
large value for maximum communication volume in Table 11. With the other decompositions, 
no partition has more thar 0.7% of the columns and 0.6% of the nonzeros. 

6.4. Preconditioned Lintear Systems 

Here we give results for working with a preconditioned linear system. As mentioned earlier, 
the goal is to partition a matrix A and its approximate inverse preconditioner M so that both 
PAQ and QTMPT are well partitioned; that is, the work per processor is balanced, and the 
communication costs are low. 

The memplus matrix is available from Matri~Market.~ (It contained 27,003 explicitly stored 
zeros, which were removed.) The matrix is of size 17,758 with 99,147 nonzeros. We used research 
code provided by Benzi and Tiima [2] to generate an approximate inverse preconditioner via the 
method of Grote and Huclde (171. The resulting preconditioner had 76,372 nonzeros. The two 
matrices were combined into a bipartite graph with weighted edges and vertices as described 
in $4. The memplus matrh will be partitioned row-wise and the transpose of the preconditioner 
will be partitioned column-wise. 

The results of the various partitioning strategies for memplus and its preconditioner are given 
in Tables 13 and 14. The1.e are two rows for each partitioning strategy: the first corresponds 
to memplus and the second to the transpose of the preconditioner. Using ML-FM, the total 
message volume is reduced by nearly a factor of 6 for the matrix and by over 16 for the 
preconditioner, although the number of messages does increase in each case. F'urther, the 
maximum message volumc: on a single processor is reduced by a factor of nearly five and more 
than eight respectively. The FM, MGAP, and ML-AP+FM methods behaved similarly. The 
AP method was not quitt: as good as the previously mentioned four methods. The Spectral 
method was nearly as bad as no partitioning at all. 

4http: //math .nist  . gov/MatrixMarhet/ 



- 22 - 

ROW 
Min M a x M  
NZ NZ 
12279 12503 
1919 16158 
12144 12555 

Table 13: Communication pattern for memplus and its (transposed) preconditioner on eight 
processors. 

Block Column 
in M a x M  in Max 

Cols Cols NZ NZ 
2009 2429 7242 36717 

9541 9551 
2097 2570 10355 13921 

Method 

Natural 

F M  

AP 

M L F M  

ML-AP 

M L A P + F M 

Spectral 

Sym M L F M  

10467 
12587 
10993 
12627 
10664 
12658 
10197 
12621 
10286 
12519 
14676 
14002 
10342 

Block 
Min I Max 

9544 9549 
2021 2408 10394 17749 

9541 9551 
2135 2387 11464 14458 

9543 9549 
2147 2484 11327 14373 

9543 9549 
2149 2444 10997 15092 

9543 9548 
1909 3180 8474 21221 

9541 9551 
1749 2416 11439 13988 

7891 10455 

"F" 
1961 2451 

L 

Table 14: Block information for memplus and its (transposed) preconditioner on eight proces- 
sors. 



- 23 - 

The number of nonzercls per block row is required to be nearly equal for memplus and 
likewise for the block columns of the transposed preconditioner. 

We have also added a xow for the symmetric MGFM scheme in Chaco [20]. The scheme 
partitions the graph = (L , E )  defined by Y = { 1,2,. . . , n}, where n is the order of the matrix, 
and (i,j) E E if either ai,, (l3*, mij, or m,% is nonzero with an edge weight equal to the number 
of those entries that are nonzero. The weight of vertex i is equal to the number of nonzeros 
in row i of A plus the num3er of nonzeros in column i of M .  The resulting symmetric matrix 
was converted into a weighted graph and partitioned by the multilevel partitioning routine in 
Chaco. 

Because this process coiiples the structure of A and M ,  the partitioner is unable to balance 
them independently. Consequently, neither A nor M are well load balanced, as evidenced by the 
min and max nonzero values for rows of A and and columns of M .  Although the total work for 
performing both products s well balanced, this may be insufficient because a synchronization 
may be necessary in between the two products. 

However, by weakening the load balance constraint in this manner, a much better partition 
is now found, leading to a significant reduction in communication cost. It is also worth noting 
that the run time of Chaco is decidedly less than that for the bipartite partitioning algorithms; 
there are two reasons for %is. First, the bipartite graph has twice as many vertices, so the 
partitioning problem is larger. Second, some of the performance enhancing features in Chaco 
(principally lazy evaluation) are not currently in the bipartite partitioning code. 

7. Conclusions 

There are numerous algorilhns requiring repeated parallel matrix-vector and matrix-transpose- 
vector multiplies with rectangular or structurally nonsymmetric sparse matrices. We outlined 
parallel matrix-vector multiply routines and demonstrated that their performance depends on 
the partitioning of the mai,rix. We showed that partitioning a rectangular or structurally non- 
symmetric matrix corresponds to partitioning a bipartite graph. We also showed that the 
bipartite partitioning model can allow for simultaneous partitioning of a matrix and its explicit 
preconditioner. We then presented several methods for the bipartite graph partitioning prob- 
lem: Alternating Partitior ing, Kernighan-Lin/Fiduccia-Mattheyses, Spectral, and Multilevel. 

We gave results for partitioning several large matrices arising from various applications. 
Overall, we found that thl: Multilevel methods usually work best. The best refinements seem 
to be either Fiduccia-Mat theyses or Alternating Partitioning plus Fiduccia-Mattheyses. The . 
later is a little more expensive in terms of time. The Spectral method was by far the worst and 
failed to even converge on many problems. 

A number of areas for future study exist. It is important to know if the theoretical gains 
in performance shown by our results hold in practice, so we are currently implementing the 
parallel matrix-vector multiply on various parallel architectures. The work on simultaneously 
partitioning a matrix and its explicit preconditioner can be extended further to the case where 
there is an explicit factored preconditioner. We also intend to optimize the research code we 
have been using for the partitioning by incorporating many of the enhancements available in the 
best codes for standard graph partitioning (e.g., lazy evaluation). Lastly, as the results from the 
Amatrix and we1998 matrices show, edge cuts may only loosely correlate with communication 
volume, and we plan to investigate alternative refinement strategies that target a more accurate 
metric for the communication cost. 



Acknowledgements 

One of the challenges of this problem was obtaining large matrices to work with. We have the 
following people to thank for providing us with data and/or data conversion utilities as well 
as helpful advice: Michele Benzi, Mike Berry, Iain Duff, Osni Marques, Karin Remington, Ed 
Rothberg, Mike Sanders, Matt St. John, Weichung Wang, and Houngyun Zha. We would like 
to acknowledge that the following conversion utilities were used: Harwell-Boeing 1/0 Routines 
in C (hbiol . 0)5 and the mps2mat routine available in LIPSOL.6 Also, thanks to A1 Geist for 
helpful discussions on the fine points of load balancing and to Eric de Sturler on preconditioning 
of iterative methods. We would like to further thank Michele Benzi for his useful comments on 
an earlier draft of this work. 

8. References 

[l] S. T. BARNARD AND H. D. SIMON, A fast multilevel impIementatzon of recursive spectral 
bisection for partitioning unstructured problems, Concurrency: Practice and Experience, 6 
(1994), pp. 101-117. 

[2] M. BENZI AND M. T ~ M A .  Private Communication, 1998. 

(31 M. BENZI AND M. T~IMA, A comparative study of sparse approximate inverse precondi- 
tioners, Tech. Rep. LA-UR-98-0024, Los Alamos Natl. Lab., 1998. 

[4] M. W. BERRY, S. T. DUMAIS, AND G.  W. O’BRIEN, Using linear algebra for  intelligent 
information retrieval, SIAM Review, 37 (1995), pp. 573-595. 

[5] M. W. BERRY, B. HENDRICKSON, AND P. RAGHAVAN, Sparse matrix reordering schemes 
f o r  browsing hypertext, in The Mathematics of Numerical Analysis, J. Renegar, M. Shub, 
and S. Smale, eds., vol. 32 of Lectures in Applied Mathematics, Americw Mathematical 
Society, 1996, pp. 99-122. 

[6] T. B U I  AND c. JONES, A heuristic for redvcingfiIl in sparse matrix factorization, in Proc. 
6th SIAM Conf. Parallel Processing for Scientific Computing, SIAM, 1993, pp. 445452. 

[7] H. CHOI AND D. B. SZYLD, Application of threshold partitioning of sparse matrices to 
Markov chains, in Proc. IEEE International Computer Performance and Dependability 
Symposium (IPDS’96), IEEE Computer Society Press, 1996, pp. 158-165. 

[8] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT 
Press, Cambridge, MA, 1990. 

[9] I. DUFF. Private Communication, 1998. 

[lo] C. M. FIDUCCIA AND R. M. MATTHEYSES, A linear time heuristic for  improving network 
partitions, in Proc. 19th IEEE Design Automation Conf., 1982, pp. 175-182. 

[ll] M. FIEDLER, Algebraic connectivity of graphs, Czechoslovak Mathematical J . ,  23 (1973), 
pp. 298-305. 

Shttp: //math.nist .gov/mcsd/Staff /KRemingtbn/harvell-io/harvell-io .html 
6http://wvv. caam.rice.edu/-zhang/lipsol/ 



- 25 - 

[12] R. FLETCHER, Conjuggtrte gradient methods for indefinite systems, in Numerical Analysis 
Dundee 1975, G. A. Wamon, ed., no. 506 in Lecture Notes in Mathematics, Springer-Verlag, 
Berlin, 1976, pp. 73-89 

[13] R. mr. FREUND AND s. M. NACHTIGAL, QMR: A quasi-minimal residual method fOT 

non-Hennatian linear systems, Numer. Math., 60 (1991), pp. 315-339. 

[14] M. GAREY, D. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete graph 
problems, Theoretical Clomputer Science, 1 (1976), pp. 237-267. 

[15] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory 
of NP-Completeness, W. H. Fkeeman and Company, New York, 1979. 

(161 G. H. GOLUB AND C. F. VAN LOAN, Matria: Computations, The Johns Hopkins University 
Press, Baltimore, 2nd ed., 1989. 

[17] M. GROTE AND T. H JCKLE, Parallel preconditioning with sparse upprodmate inverses, 
SIAM J. Sci. Comput., 18 (1997), pp. 838-853. 

[18] M. HEGLAND, Description and use of animal breeding data for large least squares problems, 
Tech. Rep. TR-PA-9340, CERFACS, Toulouse, fiance, 1993. 

[19] B. HENDRICKSON AND T. G. KOLDA, Partitioning sparse rectangular matrices f o r  parallel 
computations of Ax and ATv, in Proc. PARA98 Workshop on Applied Parallel Computing 
in Large Scale Scientifif: and Industrial Problems, to appear. 

[20] B. HENDRICKSON ANI) R. LELAND, The Chaco user's guide, version 2.0, Tech. Rep. 
SAND95-2344, Sandia Natl. Lab., Albuquerque, NM, 87185,1995. 

[21] -, An improved spectral graph partitioning algorithm for mapping parallel computa- 
tions, SUM J .  Sci. Stat. Comput., 16 (1995), pp. 452469. 

[221 - , A multilevel algorithm for.purtitzoning graphs, in Proc. Supercomputing '95, ACM, 
1995. 

[23] B. HENDRICKSON, R. LELAND, AND S. PLIMPTON, An eficient parallel algorithm for  
maM-uec tor  multiplz~~ation, Int. J .  High Speed Comput., 7 (1995), pp. 73-88. 

Tiermodell, PhD thesit;, ETH-Zurich, 1990. Cited in [18]. 
[24] A. HOFER, Schiitzung uon Zuchtwerten feldgepriifter Schweine mit einem Mehrmerkmals- 

[25] G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitioning ir- 
regular graphs, Tech. Rep. 95-035, Dept. Computer Science, Univ. Minnesota, Minneapolis, 
MN 55455,1995. 

[26] -, Parallel mdtileiiel gmph partitioning, Tech. Rep. 95-036, Dept. Computer Science, 
Univ. Minnesota, Minneapolis, MN 55455, 1995. 

[27] B. W. KERNIGHAN A N D  S .  LIN, An eficaent heuristic procedure for partitioning graphs, 
Bell System Technical J., (1970). 

[28] T. G. KOLDA, Limited-Memory Matrix Methods with Applications, PhD thesis, Applied 
Mathematics Program, Univ. Maryland, College Park, MD 20742, 1997. 



- 26 - 

[29] -, Partitioning sparse rectangular matrices for parallel processing, in Proc. 5th Intl. 
Symposium on Solving Irregularly Structured Problems in Parallel (Irregular ’98) , to ap- 
pear. 

[30] T. G. KOLDA AND D. P. O’LEARY, Latent semantic indexing via a semi-discrete matriz 
decomposition, in The Mathematics of Information Coding, Extraction and Distribution, 
G. Cybenko, D. P. O’Leary, and 3. Rissanen, eds., IMA Volumes in Math. and Its Applics., 
Springer-Verlag, 1998. 

[31] -, A semi-discrete matrix decomposition for latent semantic indexing in informatdon 
retrieval, ACM Trans. Information Systems, (to appear). 

[32] J .  G. LEWIS AND R. A. VAN DE GEIJN, Distributed memory matrix-vector multiplzcatzon 
and conjugate gradient algorithms, in Proc. Supercomputing ’93, IEEE Computer Society 
Press, 1993, pp. 484-492. 

[33] D. P. O’LEARY AND S .  PELEG, Digital image compression by outer product expansion, 
IEEE Trans. Comm., 31 (1983), pp. 441-444. 

[34] J. O’NEIL AND D. B. SZYLD, A block ordering method for  sparse matrices, SUM J .  Sci. 
Stat. Comput., 11 (1990), pp. 811-823. 

[35] C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for  sparse linear equations and 
sparse least squares, ACM Trans. Mathematical Software, 8 (1982), pp. 43-71. 

[36] A. POTHEN, H. D. SIMON, AND K.-P. LIOU, Partitioning sparse matrices with eigenvec- 
tors of graphs, SIAM J .  Matrix Anal. Appl., 11 (1990), pp. 430-452. 

[37] E. ROTHBERG. Private Communication, 1998. 

[38] H. D. SIMON, Partitioning of unstructured problems for  parallel processing, in Computing 
Systems in Engineering, no. 2/3, Pergammon,Press, 1991, pp. 135-148. 

[39] R. S. TUMINARO, J. H. SHADID, AND S .  A. HUTCHINSON, Parallel sparse matrix vector 
multiply software f o r  matrices with data locality, Concurrency: Practice and Experience, 
10 (1998), pp. 229-247. 

[40] D. W. VASCO, L. R. JOHNSON, AND 0. MARQUES, Global Earth structure: Inference 
and assessment. Submitted to Geophysical Journal International, 1998. 

[41] D. W. VASCO AND 0. MARQUES. Private communication, 1998. 

I421 C. WALSHAW, M. CROSS, AND M. EVERETT, Mesh partitioning and load-balancing for  
distributed memory parallel systems, in Proc. Parallel & Distributed Computing for Com- 
putational Mechanics, Lochinver, Scotland, 1997, B. Topping, ed., 1998. 

[43] W. WANG AND D. P. O’LEARY, Adaptive use of iterative methods in interior point meth- 
ods for  h e a r  programming, Tech. Rep. CS-TR-3560, Dept. Computer Science, Univ. Mary- 
land, College Park, MD 20742,1995. 



1-2. T. S. Darland 
3-7. T. G. Kolda 

8. M. R. Leuze 
9. E. Ng 

- 2 7 -  

ORNL/TM-13657 

INTERNAL DISTRIBUTION 

10. T. Zacharia 
11. Laboratory Records - RC 

12-13. Laboratory Records Dept. 
14. Central Research Library 

15-16. OSTI 

EXTERNAL DISTRIBUTION 

17. Daniel A. Hitchcock, Acting Director, Division of Mathematical, Information, and 
Computational Sciences, Department of Energy, ER-31,19901 Germantown Road, 
Room E230, Germantown, MD 208741290 

18. Frederick A. IIowes, Division of Mathematical, Information, and Computational 
Sciences, Department of Energy, ER-31, 19901 Germantown Road, Room E236, 
Germantown, MD 208741290 

19. David B. Nelson, Associate Director, Office of Computational and Technology 
Research, Department of Energy, ER-30,19901 Germantown Road, Room E219, 
Germantown, MD 208741290 

. 


