A stratified percolation model for saturated and unsaturated flow through natural fractures

PDF Version Also Available for Download.

Description

The geometry of the asperities of contact between the two surfaces of a fracture and of the adjacent void spaces determines fluid flow through a fracture and the mechanical deformation across a fracture. Heuristically we have developed a stratified continuum percolation model to describe this geometry based on a fractal construction that includes scale invariance and correlation of void apertures. Deformation under stress is analyzed using conservation of rock volume to correct for asperity interpenetration. Single phase flow is analyzed using a critical path along which the principal resistance is a result of laminar flow across the critical neck in ... continued below

Physical Description

8 p.

Creation Information

Pyrak-Nolte, L.J.; Cook, N.G.W. & Myer, L.R. January 1, 1990.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 26 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The geometry of the asperities of contact between the two surfaces of a fracture and of the adjacent void spaces determines fluid flow through a fracture and the mechanical deformation across a fracture. Heuristically we have developed a stratified continuum percolation model to describe this geometry based on a fractal construction that includes scale invariance and correlation of void apertures. Deformation under stress is analyzed using conservation of rock volume to correct for asperity interpenetration. Single phase flow is analyzed using a critical path along which the principal resistance is a result of laminar flow across the critical neck in this path. Results show that flow decreases with apparent aperture raised to a variable power greater than cubic, as is observed in flow experiments on natural fractures. For two phases, flow of the non-wetting phase is likewise governed by the critical neck along the critical path of largest aperture but flow of the wetting phase is governed by tortuosity. 17 refs., 10 figs.

Physical Description

8 p.

Notes

INIS; OSTI as DE90009217

Source

  • 1. international topical meeting on high-level radioactive waste management, Las Vegas, NV (United States), 8-12 Apr 1990

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE90009217
  • Report No.: LBL--28334
  • Report No.: CONF-900406--60
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 137703
  • Archival Resource Key: ark:/67531/metadc622208

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1990

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 5, 2016, 10:49 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 26

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pyrak-Nolte, L.J.; Cook, N.G.W. & Myer, L.R. A stratified percolation model for saturated and unsaturated flow through natural fractures, article, January 1, 1990; California. (digital.library.unt.edu/ark:/67531/metadc622208/: accessed August 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.