Flywheel energy storage advances using HTS bearings.

PDF Version Also Available for Download.

Description

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Physical Description

8 p.

Creation Information

Mulcahy, T. M. September 11, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 19 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Physical Description

8 p.

Notes

OSTI as DE00010701

Medium: P; Size: 8 pages

Source

  • 1998 Applied Superconductivity Conference, Palm Desert, CA (US), 09/13/1998--09/18/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-95944
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10701
  • Archival Resource Key: ark:/67531/metadc622203

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 11, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 6:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 19

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mulcahy, T. M. Flywheel energy storage advances using HTS bearings., article, September 11, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc622203/: accessed July 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.