POROSITY IN POLYSILSESQUIOXANE XEROGELS

BRIGITTA M. BAUGHER, DUANE A. SCHNEIDER, DOUGLAS A. LOY* AND KAMAL TAR
RAHIMIAN
Catalysis and Chemical Technologies Department, Sandia National Laboratories, Albuquerque,
NM 87185-1407, daloy@sandia.gov

ABSTRACT
Polymerization of organotrialkoxysilanes is a convenient method for introducing organic
functionality into hybrid organic-inorganic materials. However, not much is known about the
effects of the organic substituent on the porosity of the resulting xerogels. In this study, we
prepared a series of polysilsesquioxane xerogels from organotrialkoxysilanes, RSi(OR')3, with
different organic groups (R= H, Me, Et, dodecyl, hexadecyl, octadecyl, vinyl, chloromethyl, (p-
chloromethyl)phenyl, cyanoethyl). Polymerizations of the monomers were carried out under a
variety of conditions, varying monomer concentration, type of catalyst, and alkoxide substituent.
The effect of the organic substituent on the sol-gel process was often dramatic. In many cases,
gels were formed only at very high monomer concentration and/or with only one type of catalyst.
All of the gels were processed as xerogels and characterized by scanning electron microscopy
and nitrogen sorption porosimetry to evaluate their pore structure.

INTRODUCTION
Organotrialkoxysilanes RSi(OR')3, have been extensively used as coupling agents for
composites or surface treatments for materials [1]. Polysilsesquioxanes, [RSiO1.5]n, are prepared
by the hydrolysis and condensation of organotrialkoxysilanes (Scheme 1) [2].

\[
n \text{RSi(OR')}_3 + 1.5n \text{H}_2\text{O} \xrightarrow{H^+ \text{ or } \text{OH}^-} \left[\text{RSiO}_{1.5} \right]_n + 3n \text{R'OH}
\]

Scheme 1. Hydrolysis and condensation of trialkoxysilanes to give polysilsesquioxane gels.
R' = OMe: R = H, methyl, n-hexadecyl, n-octadecyl, vinyl, chloromethyl, (p-
chloromethyl)phenyl. R' = OEt: R = H, methyl, ethyl, n-hexadecyl, n-octadecyl, vinyl,
chloromethyl, cyanoethyl.

These polymers have become increasingly popular for generating specialty coatings such
as low k dielectric materials for microelectronic applications [3]. While there is extensive
information on the formation of polysilsesquioxanes [2], there has not been a survey of the
ability of organotrialkoxysilanes to form gels until recently [4,5]. The formation of
polysilsesquioxanes gels has been shown to be very sensitive to the nature of the organic group.
Many monomers will only form soluble oligomers or polymers upon hydrolysis and
condensation, even when the reaction is conducted solvent-free with neat monomer and aqueous
catalyst. Furthermore, there is little information on the influence of the organic group, R, on the
porosity of the polysilsesquioxanes gels that are formed [6]. In this paper we describe the
preparation of polysilsesquioxane gels where R = H, methyl, ethyl, cyanoethyl, vinyl, dodecyl,
hexadecyl, octadecyl, chloromethyl, and chloromethylphenyl and the characterization of the
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
porosity of the respective xerogels. Gels were prepared from the hydrolysis and condensation of organotrimethoxysilanes, RSi(OMe)₃, and organotriethoxysilanes, RSi(OEt)₃.

EXPERIMENT

General Methods. Anhydrous methanol was purchased from Aldrich. Ethanol was distilled from magnesium before use. ¹H nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AM400 (400 MHz) using C₆D₆ or CDCl₃ as solvent. Triethoxysilane, trimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, ethyltriethoxysilane, cyanoethyltriethoxysilane, vinyltriethoxysilane, chloromethyltrimethoxysilane, chlorotriethoxysilane, chloroethyltrimethoxysilane hexadecyltrimethoxysilane, hexadecyltriethoxysilane and n-octadecyltriethoxysilane were purchased from Aldrich. Monomer purities were checked by GC, ¹³C and ²⁹Si NMR and the monomers were distilled if necessary until purities greater than 96% (GC) were achieved.

Polymerizations. Monomers were generally polymerized with 1.5 equivalents of water in triplicate at 1M concentration in the appropriate alcohol (methanol for trimethoxysilanes; ethanol for triethoxysilanes). Aqueous HCl (1N) and NaOH (1N) were used as catalysts (2.7 mol% catalyst relative to monomer concentration). If gels were obtained, the monomer was then polymerized at lower concentrations to determine where the practical gelation threshold lies. If the monomer did not gel within 7-14 days, it was polymerized at as high a concentration as possible (based on the molecular weight and density of the monomer). Gels were described as either colloidal (opaque white), translucent (blue tinted) or transparent.

RESULTS AND DISCUSSION

Table I lists the monomers that formed gels, the conditions under which they formed, and a brief description of the gel before drying. The main difference between the polymerization of organotrimethoxysilanes and organotriethoxysilanes was the greater reactivity of the former to hydrolysis and condensation reactions. While this often did not translate to faster gelation times, the heightened reactivity of the organotrimethoxysilanes relative to the organotriethoxysilanes formed gels under not only acid and base conditions, but deionized water (pH 7) as well. Another consequence of these polymerizations, particularly with neat monomer, was the rapid exotherm during mixing associated with the acid-catalyzed hydrolysis of the organotrimethoxysilane. For example, the polymerization reaction of neat methyltrimethoxysilane with aqueous acid rapidly came to a boil and sprayed from the reaction vessel.

Many of the polysilsesquioxane gels were opaque white and colloidal in appearance before drying. Transparent or translucent gels were only obtained from the trialkoxysilanes, methyltrialkoxysilanes, and chloromethyltrialkoxysilanes. Once formed, the gels with R = H, methyl, ethyl, cyanoethyl, vinyl, chloromethyl, and chloromethylphenyl were not thermoreversible; with the exception of the chloromethylphenylsilsesquioxane gel (apparently an oligomer) prepared with water from neat methoxy monomer, the xerogels did not revert to solutions with heat. Under the same conditions, tetramethoxysilane and tetraethoxysilane form transparent or translucent silica gels. Upon aqueous work-up, the gels were all opaque white materials. These xerogels were insoluble, non-swelling materials. While both trimethoxy- and triethoxysilane (R = H) reacted exothermically under basic conditions to quantitatively give silica [9], xerogels prepared under neutral conditions were found (by solid state ²⁹Si NMR) to be a mixture of silica and HSiO₁.₅. The organic groups on the
remaining monomers proved to be stable under sol-gel conditions. The only organic groups that could potentially be chemically modified are the chloromethyl and p-chloromethylphenyl groups. These groups might be expected to undergo nucleophilic substitution reactions with hydroxide ions present under basic conditions. However, under the sol-gel conditions used in these experiments the chloride substituents in the chloromethyltrialkoxyxilanes [10] and chloromethylphenyl-trimethoxysilane did not react, even when basic catalysts were used. Both 29Si NMR and chlorine elemental analysis showed that little, if any, of the chlorine was lost during the sol-gel process.

Unlike other xerogels, polysilsesquioxane xerogels prepared from the dodecyl, hexadecyl, and octadecyl-substituted monomers melted between 45 °C and 75 °C. (This prevented porosimetry data from being obtained because the samples need to be dried before the isotherm is measured, typically at 100 °C under vacuum.) Gels of poly(octadecylsilsesquioxane) were recently reported by Shimojima et. al. [7]. Gelation was attributed to self-organization of the long chain aliphatic organic groups. Scanning and transmission electron micrographs of these materials were consistent with non-porous materials, but revealed no ordered supramolecular architectures. Interestingly, we found that the gels (before drying) of these monomers were thermoreversible. Solutions of the materials in hot benzene (80 °C) were cooled and converted into transparent monolithic gels. Characterization of these materials is in progress.

Table I. Organotrialkoxysilanes that formed gels at concentrations ranging from 0.1M to neat monomer. Polymerizations with 1.5 equivalents water and 2.7 mol% catalyst in methanol (for RSi(OMe)$_3$) or ethanol (for RSi(OEt)$_3$). Gels are described as transparent (transp.), translucent (transl.) or opaque.

<table>
<thead>
<tr>
<th>R</th>
<th>RSi(OMe)$_3$</th>
<th>RSi(OEt)$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H$^+$</td>
<td>OH$^-$</td>
</tr>
<tr>
<td>H</td>
<td>transl.</td>
<td>transl.</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>opaque</td>
<td>transl.</td>
</tr>
<tr>
<td>CH$_3$CH$_2$</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dodecyl</td>
<td>opaque</td>
<td>opaque</td>
</tr>
<tr>
<td>Hexadecyl</td>
<td>opaque</td>
<td>opaque</td>
</tr>
<tr>
<td>Octadecyl</td>
<td>opaque</td>
<td>opaque</td>
</tr>
<tr>
<td>Vinyl</td>
<td>opaque</td>
<td>opaque</td>
</tr>
<tr>
<td>ClCH$_2$</td>
<td>transl.</td>
<td>opaque</td>
</tr>
<tr>
<td>(p-ClCH$_2$)phenyl</td>
<td>---</td>
<td>opaque</td>
</tr>
<tr>
<td>CNCH$_2$CH$_2$</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Porosity in xerogels is routinely evaluated by nitrogen sorption porosimetry to obtain surface areas and mesopore size distributions (20-500 Å) [8] and with scanning electron microscopy to evaluate pores larger than 500 Å. Surface area and mean pore diameter measurements for
xerogels prepared from organotrimethoxysilanes are shown in Table II. Measurements for the xerogels prepared from organotriethoxysilanes are included in Table III. Values for silica gels prepared under the same conditions are also included.

Table II. Surface areas and mean pore diameters for different R groups in RSi(OMe)₃ based polysilsesquioxane xerogels. (a) Gels were obtained at 1.0 M monomer concentration. (b) Monomer reacts violently, boiling the solution. (c) Gels were obtained at neat monomer concentration.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface Area (m²/g)/(Pore Diameter (Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OMe</td>
</tr>
<tr>
<td>H⁺</td>
<td>246 (22)ᵃ</td>
</tr>
<tr>
<td>H₂O</td>
<td>342 (50)ᵃ</td>
</tr>
<tr>
<td>OH⁻</td>
<td>212 (65)ᵃ</td>
</tr>
</tbody>
</table>

Table III. Surface areas and mean pore diameters for different R groups in RSi(OEt)₃ based polysilsesquioxane xerogels. (a) Gels were obtained at 1.0 M monomer concentration. (b) Monomer reacts violently, boiling the solution. (c) Gels were obtained at neat monomer concentration.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Surface Area (m²/g)/(Pore Diameter (Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OEt</td>
</tr>
<tr>
<td>H⁺</td>
<td>No Gels</td>
</tr>
<tr>
<td>H₂O</td>
<td>637 (84)ᵃ</td>
</tr>
<tr>
<td>OH⁻</td>
<td>No Gels</td>
</tr>
</tbody>
</table>

Xerogels with R = H or Me exhibited the highest surface areas (>500 m²/g) and pores in the lower mesopore range (<100 Å). Most of the polysilsesquioxanes with organic groups had lower surface areas and larger pores than the polysilsesquioxanes with R = H, or were non-porous completely. Xerogels prepared under acidic conditions were often non-porous, whereas those prepared under basic conditions were generally porous. Exceptions to this were the chloromethylphenyl substituted polysilsesquioxane xerogels which were non-porous regardless of the experimental conditions used in their preparation. Xerogels prepared from sol-gel
polymerizations run at higher monomer concentration generally possessed lower surface areas or were non-porous.

Scanning electron microscopy (Figure 1) supplements porosimetry data by providing information regarding macropores (mean pore diameter >500Å) that can not be evaluated using nitrogen sorption techniques. For instance, the polysilsesquioxane xerogel prepared from HSi(OMe)_3 under acidic conditions was determined to have a surface area of 667 m²/g and a mean pore diameter of 67 Å by nitrogen sorption. The SEM of the material (Figure 1; upper left) reveals no macroporosity. In contrast the polysilsesquioxane xerogels prepared from methyltriethoxysilane (Figure 1; upper right) exhibits significant macroporosity in addition to the mesopores observed by nitrogen sorption. The xerogel prepared from chloromethylphenyltrimethoxysilane is non-porous by nitrogen sorption and has no visible macroporosity by SEM (Figure 1; bottom left). Because the hexadecyltriethoxysilsesquioxane xerogel melts between 45 °C and 75 °C, it has not been possible to obtain porosity measurements. However, the SEM (Figure 1; lower right) reveals no macroporosity.

CONCLUSIONS
Polysilsesquioxane xerogels were prepared by the sol-gel polymerization of organotrialkoxysilanes, RSi(OR')₃, with R' = Me: R = H, Me, vinyl, chloromethyl, chloromethylphenyl, hexadecyl, and octadecyl and R' = Et: R = H, Me, Et, cyanoethyl, chloromethyl, vinyl, dodecyl, and hexadecyl. The majority of the gels were opaque and colloidal in appearance. The gels with R = H, Me, and chloromethyl were the most transparent. The
porosity of the xerogels was characterized by nitrogen porosimetry and scanning electron microscopy. Xerogels prepared from trimethoxysilane and triethoxysilane had the highest surface areas. Many of the remaining organotrialkoxysilanes formed porous polymeric gels, but the surface areas were lower and the mean pore sizes larger. Some xerogels, especially those prepared under acidic conditions, were non-porous.

ACKNOWLEDGMENT

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

REFERENCES