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BENDING Am SHEAR STRESSES DEVELOPEO BY THE INSTANTti”ti

ARREST OF THE ROOT OF A MOVING CANTILEVER BEAM

By Elbridge Z. Stowell, Edward B. Sohwartz
and John C. Houbolt

A theoretical ah experimental investigation has been
made of the behavior of a cantilever beam in transverse
motion when Its root is suddenly brought to rest. Equations
are given for determining the stresses, the deflections, and
the accelerations that arise in the beam as a result of the
Impact. The theoretical equations, which have been confirmed
experimentally, reveal that, at a given percentage of’the
distance from root to tip, the bending stresses for a
particular mode are Independent of the length of the beam
whereas the shear stresses vary inversely with the length.

INTRODUCTION

When an airplane lands, the vertical component of the
velocity is rapidly reduced to zero. In the absence of a
thorough analysis of the stresses that arise from such
shocks, it is customary for engineers to assume that the
landing loads are static and independent of the elastic
properties of the structure. As an initial step In the study
of elastic structures under shook loads, u investigation has
been made to determine the effect on a simple structure of
the sudden arrest of Its motion and the effect-of the
geometry of the structure on the stresses that result. The .
particular case treated In this report covers the basic
problem of the instantaneous arrest of the root of a moving
cantilever beam. The solution of this problem gives the
energy consumed in exciting the different modes of vibration
and the stresses, deflections, and accelerations that result
throughout the beam. . .

This investigation Is.based on the usual engineering
beam theory in which the deflections are considered to be the
result of bending alone and shear deflections are negleoted.
The theory, as applied to ordinary beams, gives reasonably
good results as long as the distance between inflection
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points i.sgreater than a few times the depth of the beam.
When this theory for beam action Is used i.nvibration
problems, such as the problem in the present paper, the
results are satisfactory for those modes of vibration for
whioh the nodes are not too close together. This report
summarizes the results of a theoretical solution, given in
the appendix, and presents an experimental verification
of these results.

SYMBOLS

E

Y

A

c

6

L

I

A

P

x

Y

t

P

n

On

LDn

modulus of elasticity

weight density of material

coefficient of,equivalent viscous dsmping of
material

(~)
velocity of sound in material ~

acceleration of gravity

len6th of beam

moment of inertia of cross section of’beam about
neutral axis

cross-sectional area of beam

radius of gyration of cross section of beam
“ (0

&
A

coordinate along beam measured from root

distance from neutral axis of beam to any fiber

time, zero at impact

operator
()

d
E

integers 1, 2, 3, etc. designating a particular
mode of vibration

nth positive root of 1 + cos 0 cosh El= O

undamped natural angular frequency of nth mode,

()

~n2
radians per second Pc —

~2

)
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v

W(x,t)

Wn(X, t)

a(x,t)

an(x,t)

5(x,y,t)

?(x,t)

Tn(x,t)

demped natural angular
-.... .,,... .

radians per se”cond”

frequenoy of nth mode,

-&l=)-- ~~
is defined

velocity of beam prior to impact

deflection of beam at station x and

deflection of beam at station x and
for nth mode of vibration

time t

time t

aoceleratlon of beam at station.x and time t

acceleration of beam at station x and time t
for nth ❑ode of vibration

bending stress in beam at
from neutral =is Y9

bending stress in beam at
from neutral axis 7S
nth mode of vibration

average shear
at station

average shear
at station
vibration

stress over

station x, distance
and time t

station x, distance
and time t for

cross section of beam
x and time t

stress over cross section of beam
x and time t for nth mode of

bending-stress coefficient

shear-stress ooefflcient

deflectlon coefflcient
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RESULTS AND CONCLUSIONS

Theoretical

When a cantilever beam under uniform translation in
a direction perpendicular to its length has Its root
instantaneously brought to rest, there is excited a
theoretically infinite number Qf modes of vibration.
With each successive mode, damping has an increasing
influence upon the frequencies and amplitudes of vlbratlon
and, for sufficiently high modes, even changes the type
of motion from oscillatory to nonoscillatory motion. In
the lower modes, however, damping has little effec~ and
only terms of the first order in damping need to be included “
In the equations. Only the equations applicable to the
lower modes, which alone are of Importance in any practical ~
case, are presented in this section of the paper. For a I
more complete treatient of damping, see the appendix. ;

The angular frequencies (2TT times the frequencies
In cps) are given by the equation

~n2
Un = PC

7
(1)

where on has the following values for successive modes
of vibrations

91 = 1.87510k 05 = 14.137168

92 = 4.69~098 06 = 17.278759

93 = 7.854757 % z # (2n-l)n, n >6

04 = 10.995541

The energy that the beam possesses before Impact Is
consumed in exciting the various modes of vibration and
IS distributed.among the modes as follows:
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This

‘Mode, n Percentage of energy

.. 61.
: 18. 3

1
; $

5
6

1:9
1.3

7tolX! 6.1

distribution of enerm amozu?the di3?ferentmodes of
vibration is presented gr~fihlcaliyIn figure 1.

All stresses, deflections, and accelerations are
damped sinusoidal functions of time and vary along the
length of the beam. The bending stress un(x~y~t) ~d
the average shear stress 7n(X,t), associated with the
nth mode of vibration, are given by the equations

Aun2
v ~ e-~t sin Unt

Un(x,Y~t) =AnEpE - (2)
. .

Aun2

7n(X,t) = ~ ~ ~Ee-Tt sin Wnt (3)

The variation of the dimensionless coefficients An
and ~ with x/L is given for n = 1, 2, and 3 in
figures 2 and 3. The highest values of An and ~,
and hence the highest stresses, occur at the root of the
beam. These values, for the first six modes, are

Mode, n An at root Bn at root “

1. ;: 2.146
; ii

$

4.14
:50

? $
8: g;

z

.36

.283 ~.oo

.231 4.00
.

The foregoing values of An and ~ at the root are
presented graphically in figure 4.

The maximum values with respect to time of %(x, Yst)
and Tn(X, t) associated with the nth mode of vibration,
when the effects of damping are neglected, are

II 1 1-
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Un(x,y) = in ; $E (4)

~n(x) = ~ : fE (5)

The deflections wn(x,t) for the nth mode of
vibration are given by the

Wn(X,t) = Cn ~

The accelerations an(x,t)

equation
Au 2

L2 ‘~~t sin @nt
-eP

Sor the nth mode, when

(6)

damping is sufflclen~ly small, are given by

an(X,t) = 40n2 Wn(X,t) “(7)

The variation of the dimensionless coefficient Cn
with x/L is given for n = 1, 2, and.q th ffgufie5.

The equations (4) to (7) for stress, deflection,
and acceleration give the values associated with the
nth mode of vibration. Sinoe all modes of vibration
occur simultaneously, the net results are the superposition
of the effects of all modes. This superposition gives
the following equations:

For bending stress,

tY(x,y,t)= :

ti22

+ A2e
)

“~t sin w2t + ● ● “

Fbr averege shear stress,

(

~~ 2
VP~ # Ble-+

t
T(x,t) = - sin ult

A(D22

)
+ ~e-~t sin 02t + . . .

(8)

(9)
I
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For deflection

“(

A@.. .. ... ....,,.,,..... .......... . -..-=..Z.L& ...-
W(x,t) c p Cle =t:ain””&lt --- .

A@2

-* t
+ C2e “

)“
slnkpt+ ..O (lo)

15bracceleration, when damping is sufficiently small,

( ?ul)p

a(x,t) = ~ *2 Cla12e-~t sin qt

~2

)
+ C2Q22e-~t sin @2t + ... (11)

The equation for bending stress (equation (~))
reveals that, at a given percentage of the distance from
root to tip, the bending stress for a particular mode Is
independent of the length of the beam and depends only
on the velocity before impact. The equation for shear
stress (equation (5)) reveals that the shear stresses at
any station vary inversely with the length of the beam.
These results are contrary to those that might be
expected on the basis of experience with the static
behavior of structures. Fbr this reason an experimental
investigation was made.

Experimental

A circular steel tube of l-inch outside diameter
and 0.028-inch wall thickness was mounted symmetrically
on the end of a pendulum to form a pair of cantilever
beams. (See fig. 6J The pendulum was permltted to start
its swing from a predetermined position and was suddenly
brought to rest at the bottom of its swing against an
electromagnet used to prevent rebound. The effect of
length was studied by reducing the length of the tube in
successive tests. The bending and shear strains were
measured by electrical strain gages that were mounted on
the tube as shown in figure 7. Each pair of gages was
incorporated into a Whetstone bridge circuit as shown
diagrammatically h figure 8. The outputs of the brid~e

-— ... .. ..—. ..-..
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systems were fed through a strain-gage amplifier into a
multichannel osclllograph that recorded the strains on
moving photographic paper. The amplitude of the components
of strain due to the modes of higher frequenoy was
reduced, however, because of the response characteristics
of the osclllograph. The frequency-response curve for
the oscillograph used is given in figure 9.

Typical records for tubes of two lengths are shown
in figure 10. Inspection of the record for the cantilever

beam 26? inches long shows the superposition of the

second and third modes upon the first mode. The record
shows that, in the case of the bending strain, the
contribution of the second mode is small; whereas, in
the case of the shear strain, the contribution of the
second mode is large. This observation confirms
qualitatively the theoretical results shown in figure 4.
The same effect 1s not shown, however, in the record for..

zthe cantilever beam 11 Inches long because of the

combined action of damping and reduced response of the
oscillograph to the higher frequencies associated with
this short length of tube.

The bending stresses computed by use of equation (8),
in which only the first three modes are used, are given
by the solld-llne curve of figure 11 for the cantilever

beam 26f inches long. Comparison of this curve with the
1

record obtained during the first ~ cycle of the first
mode (see fig. 10) shows good agreement as regards the
wave shape.

Because of the damping present in the tube and the
response characteristics of the osclllograph, the only
component of vibration that could be satisfactorily
recorded for all lengths of cantilever tube was the
fundamental or first mode. The quantitative results of
the tests consequently were based upon this mode of
vibration. This procedure is sound because the effects
of the various harmonics are independent of’one another.
In the analysis of the results, the data had to be
corrected for the influence of the magnet.

The observed frequencies are compared with the
frequencies computed from equation (1) for the first
mode in the following table:
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. . .- ..
Freq

Obaerve~...
(cpa)

17.5

27.9

52.1

131

272

enoy
~....x.cm~uted,.

(Cps).

17 ● 5

20.2

137

277 “

. .

The experimental values of extreme-f’lberbending
stresses and the shear stresses at the root, for the–
fundamental mode, .are plotted in figure 12. In figure 12
are also shown the corresponding theoretical curves of
equation (4) for bending and equation (5) for shear with
n taken as 1. It is observed that the experimental
points follow the trend of and lie close to the theoretical
curves.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va.
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APPENDIX

THEORETICAL DERIVATION

General analysis.- Consider a beam of uniform cross
section In equilibrlum. If a portion of’the beam Is
suddenly disturbed, as by a shock, in a direction
perpendicular to its length, the beam is set into damped
bending oscillations. The equation of motion for these
bending oscillations is given by the differential
equation (reference 1)

(Al)

The damping term
~p2 ~5w

— is derived on the
bxb t

assumption that the longitudinal damping force per unit
area at any point on the cross section of the beam is
proportional to the rate of cliangeof longitudinal strain
at that point. (See reference 2.) This type of force is
analogous to ordinary viscous drag, in which the tangential
force per unit area is proportional to the rate of change

of shear strain. With the use of the notation C2 = ~
Y’

equation (Al) can be written

(A2)

In accordance with the Heaviside operational methods
(reference 3), equation (A2) may be reduced to an
ordinary differential equation

a
writing p = —; thus,

at

of the Pourth.order by

-L=O
C2P2

(A3)
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The general solution of equation (A3) Is
. . .. .. !. ..,-, .. W..,

. . . . . . . . . . ,,, ,,

. . . . . . . . .

. -!...,... . . . . . . . . . . . . . . . . . . . . . . . .

w = P coah ~ + Q ainh e$ + R sin .ef+ s’coii””~””““(&”j

where

Irip
e =L

r
Pc +%

The coefficients P, Q, R, and S are to be determined from
the boundary conditions. The case under consideration is
that of a cantilever moving with uniform velocity v and .
having its base brought Instantaneously to rest. The
boundary conditions for this case are

(*)x=o‘(5)...=(3).=.=0
The velocity of the root as given by the first boundary
condition is represented graphically In figure 13(a).
The rules of the Heavlslde calculus, however, have been
devised for a disturbance, called the unit functlon~ ,
shown in figure 13(b). By the principle of superposition,
the veloclty function shown in figure 13(a) may be
considered as a superposition of those shown in figures 13(c) “
and lz(d). The velocity therefore consists of a constant
velocity v (fig. 13(c)) added to the solution of the
problem obtained by the Heavislde expansion theorem for
the disturbance shown in figure 13(d) . On the basis of
this procedure, the first boundary condition may be
written

()g .=p(w)x=o = -Vd
x=”
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With the ap libation.of the Wundary conditions to
equation (J) the operational form of the solution for
the velocity ~that induced by the disturbance) Is found
to be

pw=2 -VI
(l+cosh e COS e J

(1+ COS e cosh O) (cosh~+ COS e;)

+sin 9“sinh e (cosh e; - cos ef)

+(sinh e cos e + cosh e sin e) (sin & - Sinh $)] (A!))

Interpretation of this operational
of the constant velocity v gives

where

en

en2

% = pc~

expression and addition
for the total velocity

nth positive root of 1 + cos e cosh i3=0

undamped natural angular frequency of
nth mode, radians/see

i

A%nz
%’ ‘% ‘— damped natural angular frequency of

& nth mode, radians/see



( )(sln9* sfnh~ Gosh~~ - oosen; - ooeh& sinf3n+ sinh~ oosen
)( )EM en;- Sinen;

F(~;)=
:

osh& sinOn - sinh& 00SOn , *
b

Integrationof equation (A6) with respect to the time with the condltlon
gives for the deflection

v=-
C

where

en=
The contributionof the nthmode to the deflectionis

v L2
Wn(X,t) = ~~ Cn

(W)t=o= Q

I

1

L

,
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Wn(x,t) = :

equatton (A8) may be
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put in the form

where now

The form indicated by equation (A8), where ~ < 1, is

characteristic’of the lower modes and represents damped
oscillatory motion. The form indicated by equation (A9),

* >1 (damptng 6where 2E rester than critical), is

characteristic of the higher modes and represents
subsidence motion.

l?romequation (A6) for velocity and equation (A7)
for deflection, the complete behavior of the cantilever
r,aybe determined. The quantities of interest are the
bending stresses, the shear stresses, and to some extent
the accelerations. When damping is present, the equations
representing the contribution of the nth mode to these
quantities may be given in the two forms indicated by
equations (A8) and (A9). In subsequent equations, however>
only the form indicated by equation (A8) is given because
it is characteristic of the modes that are of practical
importance.

Bending stresses.- The bending stresses U(x,y,t)
at any fiber distance y from the neutral axis are



—

J

=E:

where s

The bending stress due to only the nth mode Is

1

AnL

Ire~2%2
1 -—

w

%12t
-zii- sin ,



P

Shear stresses.- The average shear stress over the cross section T(x,t) is m

.

Ad

-u -

The average shear stress due

coshQn 6ill & _ 6hhen 00S &

to only the nthmode is

A4A).2 .

Accelerations.- Frornequation (A6), with the aid of the relation

pF(t)~ = F(())p~+ F’(t)~
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acoeleratlon anywhere on the beam is found to be
.... .. ......,..........,.......,

a(x,t) y b.%r(xmt)
~t2

~[22~ni) : ,]@ ......

=

~’t + ).Oosa)nft i

With the aid of the orthogonal properties of the

functions
()

F en~
L

it Is possible to show that the

quantity 2~F (On~) - 1 reduces to zero when O C :gl.

n=l
At :=0, the quantity

2Z.4<)
equalsaero,apd.only the

n=1
term -vpZ remains. This term Indicates that at t = O
an infinite acceleration of zero duration
root.

The acceleration due to only the nth

exists at the

mode is

Comparlson with the expression for Wn(X, t) (equation (A8))
shows that the acceleration for each mode is out of phase
with the deflection. When damping is sufficiently small,
however, the relation between the acceleration and the
deflection reduces to the well-known result for undamped
vibration

.

an(X,t) = +/wn(x,t)
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Figure 6.- Pendulum assembly used in impact test”.
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