LOW ENERGY GAMMA-TRANSITIONS IN Pu238 AND Pu240

G. G. Akalaev, N. A. Vartanov, and P. S. Samoилов

Translated by K. W. Foster

AEC Research and Development REPORT

RECEIVED
OCT 11 1995

Monsanto Research Corporation
A SUBSIDIARY OF MONSANTO COMPANY

MOUND LABORATORY
MIAMISBURG, OHIO
OPERATED FOR
UNITED STATES ATOMIC ENERGY COMMISSION
U.S. GOVERNMENT CONTRACT NO. AT-33-1-GEN-53

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
LOW ENERGY GAMMA-TRANSITIONS IN Pu238 AND Pu240

G. G. Akalaev
N. A. Vartanov
P. S. Samoilov

Translated by K. W. Foster

From Atomnaya Energiya (USSR) 16, 452 (May, 1964).

Copyright releases have not been obtained from the publisher or the authors.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
The radioactive nuclei curium-242 and curium-244 transform by alpha decay into the long-lived isotopes plutonium-238 and plutonium-240. Fundamental radiation data about energy levels of the nuclei plutonium-238 and plutonium-240 of these isotopes are in the literature.1,2 However, in these works there has been no comparison of internal conversion coefficients of gamma transitions of the plutonium nuclei with theoretical values of internal conversion coefficients for L and M subshells of the atoms. Such a comparison should reveal possible anomalous internal conversion coefficients of accelerated E2-transitions in strongly deformed nuclei.3

The gamma emission spectra of isotopes curium-242 and curium-244 have not been analyzed in published works. Moreover, such an analysis would indicate the degree of separation of curium from other radioactive products generated in the process of its production.

In order to obtain the indicated information, we investigated electron and gamma spectra of mixtures of isotopes of curium; this was done on a beta spectrometer with double focusing at an angle of $\pi \sqrt{2}$ and on a scintillation gamma spectrometer5 with a 40x40mm NaI(Tl) single crystal detector.

The preparation containing the mixture of curium isotopes was deposited on a celluloid film 0.1\mu thick in the form of a little strip 1.5x35mm and coated with a semitransparent layer of Aquadag. The counter window was 2x35 mm and was covered by a celluloid film 0.05\mu thick which permitted the system to count electrons starting with an energy of \sim1 KeV. The electron spectrum was measured in interval numbers from 90 to 1250 oersted-cm, which corresponds to electron energies of 0.8 to 120 KeV. The observed electron lines are interpolated in Table 1.

\textbf{NOTE:} Manuscript received by the editor, Sept. 19, 1963.
Table 1

INTERPRETATION OF LINES IN THE ELECTRON SPECTRUM OF PLUTONIUM-238 AND PLUTONIUM-240

<table>
<thead>
<tr>
<th>Line Number in Spectrum</th>
<th>Electron Energy (KeV)</th>
<th>Conversion Shell</th>
<th>Transition Energy (KeV)</th>
<th>Intensity of Line (rel. units)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>21.05</td>
<td>L₁</td>
<td>44.15</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>21.82</td>
<td>L₁₁</td>
<td>44.08</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>26.07</td>
<td>L₁₁₁</td>
<td>44.14</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>38.08</td>
<td>M₁</td>
<td>44.01</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>38.46 M₁₁₁+M₁₁₁ (Cm²⁴₂)</td>
<td>44.02</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>39.58</td>
<td>M₁₁₁</td>
<td>44.14</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>42.83</td>
<td>N</td>
<td>44.09</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>Average</td>
<td>44.09</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19.82</td>
<td>L₁</td>
<td>42.92</td>
<td>6: 5</td>
<td>Pertains to Cm²⁴₂</td>
</tr>
<tr>
<td>2</td>
<td>20.62</td>
<td>L₁₁</td>
<td>42.88</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24.79</td>
<td>L₁₁₁</td>
<td>42.86</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>36.89</td>
<td>M₁</td>
<td>42.82</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>37.41 M₁₁₁+M₁₁₁ (Cm²⁴₂)</td>
<td>42.97</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>41.68</td>
<td>N</td>
<td>42.88</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>Average</td>
<td>42.9</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

0₁ Auger Electrons M₁ - N₁Nₑ L₁ - L₁Mₑ
Auger

0₁ : 0₃ Auger Electrons M₁ - M₁Mₑ
Auger

0₄ Auger Electrons L₁₁₁ - M₁Mₑ
Auger

0₅ Auger Electrons L₁₁₁, L₁ - M₁Mₑ L₁ - M₁Mₑ
Auger

0₆ Auger Electrons L₁ - M₁Nₑ
In Table 2 experimental results of the ratio of conversion at L and M subshells are compared with theoretical values taken from the literature. As it is seen from the tables, experimental values of the conversion coefficients $L_{11}:L_{11}$ and $M_{11}:M_{11}$ agree with theoretical values within a precision of $5 - 10\%$.

Since the observed intensity of the weak line L_{1} includes the contribution of Auger electrons, it does not seem possible to disengage accurately its true intensity.

In addition to the lines considered in Table 1, two more lines were also observed in the spectrum with energies of 72 and 115 KeV. For the purpose of identification of these lines a gamma spectrum of the sample was measured in which gamma lines are observed at 45, 123, 248, 385, 720, 873, 1003, and 1280 KeV, which are attributed to europium-155. From analysis of the electron and gamma spectra it is seen that the sample in question contains, besides the isotopes curium-242 and curium-244, the impurities europium-154 and europium-155. The electron lines at 72 and 115 KeV are due to conversion of gamma transition energies at 123 KeV in the K and L subshells of gadolinium.

The Auger electron lines were not quantitatively interpreted in the present work.
Table 2

RATIO OF INTERNAL CONVERSION COEFFICIENTS E2-TRANSITIONS
WITH ENERGY 43 AND 44 KEV, FOR Z = 94

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Theoretical Values References 6 & 7</th>
<th>Present Work 43 KeV</th>
<th>44 KeV</th>
<th>Experimental Values Reference 2</th>
<th>Reference 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_1:L_{1,1}$</td>
<td>0.032</td>
<td>0.09</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$L_{1,1}:L_{1,1}$</td>
<td>1.82</td>
<td>1.21</td>
<td>1.28</td>
<td>-</td>
<td>1.18</td>
</tr>
<tr>
<td>$M_1:M_{1,1}$</td>
<td>0.053</td>
<td>0.07</td>
<td>0.085</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$M_{1,1}:M_{1,1}$</td>
<td>1.13</td>
<td>1.25</td>
<td>1.3</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>L:M:N</td>
<td>$2.27:1:?$</td>
<td>$2.3:1:0.22$</td>
<td>$2.24:1:0.25$</td>
<td>-</td>
<td>$1.85:1:0.16$</td>
</tr>
</tbody>
</table>

Reference 2 Reference 3
REFERENCES

