Inner-shell photoionized x-ray lasers

PDF Version Also Available for Download.

Description

The inner-shell photoionized x-ray lasing scheme is an attractive method for achieving x-ray lasing at short wavelengths, via population inversion following inner-shell photoionization (ISPI). This scheme promises both a short wavelength and a short pulse source of coherent x rays with high average power. In this dissertation a very complete study of the ISPI x-ray laser scheme is done concerning target structure, filter design and lasant medium. An investigation of the rapid rise time of x-ray emission from targets heated by an ultra-short pulse high-intensity optical laser was conducted for use as the x-ray source for ISPI x-ray lasing. Lasing ... continued below

Physical Description

vp.

Creation Information

Moon, S.J. June 1, 1998.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

The inner-shell photoionized x-ray lasing scheme is an attractive method for achieving x-ray lasing at short wavelengths, via population inversion following inner-shell photoionization (ISPI). This scheme promises both a short wavelength and a short pulse source of coherent x rays with high average power. In this dissertation a very complete study of the ISPI x-ray laser scheme is done concerning target structure, filter design and lasant medium. An investigation of the rapid rise time of x-ray emission from targets heated by an ultra-short pulse high-intensity optical laser was conducted for use as the x-ray source for ISPI x-ray lasing. Lasing by this approach in C at a wavelength of 45 {angstrom} requires a short pulse (about 50 fsec) driving optical laser with an energy of 1-5 J and traveling wave optics with an accuracy of {approximately} 15 {micro}m. The optical laser is incident on a high-Z target creating a high-density plasma which emits a broadband spectrum of x rays. This x-ray source is passed through a filter to eliminate the low-energy x rays. The remaining high-energy x rays preferentially photoionize inner-shell electrons resulting in a population inversion. Inner-shell photoionized x-ray lasing relies on the large energy of a K-{alpha} transition in the initially neutral lasant. The photo energy required to pump this scheme is only slightly greater than the photon energy of the lasing transition yielding a lasing scheme with high quantum efficiency. However, the overall efficiency is reduced due to low x-ray conversion efficiency and the large probability of Auger decay yielding an overall efficiency of {approximately} 10{sup {minus}7} resulting in an output energy of {micro}J's. They calculate that a driving laser with a pulse duration of 40 fs, a 10{micro}m x 1 cm line focus, and an energy of 1 J gives an effective gain length product (gl) of 10 in C at 45 {angstrom}. At saturation (gl {approximately} 18) they expect an output of {approximately} 0.1 {micro}J per pulse. The short duration of x-ray lasing (< 100 fs) combined with a 10-Hz repetition rate (P{sub avg} = 1{micro}W) makes this source of coherent x rays ideal for pump-probe experiments to study fast dynamical processes in chemistry and material science.

Physical Description

vp.

Source

  • Other Information: TH: Thesis (Ph.D.); Submitted to Univ. of California, Davis, CA (US)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Report No.: UCRL-LR-131000
  • Report No.: DP0210000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 12527
  • Archival Resource Key: ark:/67531/metadc622113

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 3:20 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 4

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Moon, S.J. Inner-shell photoionized x-ray lasers, thesis or dissertation, June 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc622113/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.