Small bipolarons in boron carbides: Pair breaking in semiclassical hopping

PDF Version Also Available for Download.

Description

A pair of charge carriers can be bound within a common potential well produced by displacing atoms from their carrier-free equilibrium positions. These two self-trapped carriers together with the associated atomic-displacement pattern is referred to as a bipolaron. If the self-trapped carriers` wavefunction is primarily confined to a single structural unit (atom, bond or molecule), the bipolaron is termed small. If however the self-trapped carriers` wavefunction extends over multiple structural units, the bipolaron is called large. Small bipolarons form in crystals if the energy lowering due to the carriers` self-trapping exceeds the electronic-transfer energy associated with an electronic carrier`s intersite ... continued below

Physical Description

10 p.

Creation Information

Emin, D. September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A pair of charge carriers can be bound within a common potential well produced by displacing atoms from their carrier-free equilibrium positions. These two self-trapped carriers together with the associated atomic-displacement pattern is referred to as a bipolaron. If the self-trapped carriers` wavefunction is primarily confined to a single structural unit (atom, bond or molecule), the bipolaron is termed small. If however the self-trapped carriers` wavefunction extends over multiple structural units, the bipolaron is called large. Small bipolarons form in crystals if the energy lowering due to the carriers` self-trapping exceeds the electronic-transfer energy associated with an electronic carrier`s intersite motion. Small-polaron and -bipolaron formation is also often induced by disorder. Interest in bipolarons focuses on situations in which they are energetically stable with respect to dissociating into two individual carriers. Stability is achieved when the additional lowering of the atomic-displacement-related energy arising from two carriers sharing a common site overwhelms their mutual Coulomb repulsion. Self-trapped carriers only move when the positions of the atoms whose displacements produce self-trapping change. When atoms move so as to shift small-polaronic self-trapped carriers between adjacent sites, changes of the self-trapped carriers` energies always exceed their intersite electronic transfer energy. Since small-polaronic self-trapped carriers thereby lose coherence as they move, their transport is described as hopping incoherently between localized states. This report discusses the electronic structure of boron carbides and describes features that make them ideal for studying small bipolaron hopping. The effect on conductivity is discussed.

Physical Description

10 p.

Notes

OSTI as DE95017893

Source

  • 6. international conference on hopping and related phenomena, Jerusalem (Israel), 27-30 Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95017893
  • Report No.: SAND--95-1976C
  • Report No.: CONF-9508166--2
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 111912
  • Archival Resource Key: ark:/67531/metadc622111

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 14, 2016, 6:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Emin, D. Small bipolarons in boron carbides: Pair breaking in semiclassical hopping, article, September 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc622111/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.