Radiation effects on materials in the near-field of a nuclear waste repository. 1997 annual progress report

PDF Version Also Available for Download.

Description

'Sheet silicates (e.g. micas and clays) are important constituents of a wide variety of geological formations such as granite, basalt, and sandstone. Sheet silicates, particularly clays such as bentonite are common materials in near-field engineered barriers in high-level nuclear waste (HLW) repositories. This is because migration of radionuclides from an underground HLW repository to the geosphere may be significantly reduced by sorption of radionuclides (e.g., Pu, U and Np) onto sheet silicates (e.g., clays and micas) that line the fractures and pores of the rocks along groundwater flowpaths. In addition to surface sorption, it has been suggested that some sheet ... continued below

Physical Description

4 pages

Creation Information

Wang, L.M. & Ewing, R.C. November 25, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

'Sheet silicates (e.g. micas and clays) are important constituents of a wide variety of geological formations such as granite, basalt, and sandstone. Sheet silicates, particularly clays such as bentonite are common materials in near-field engineered barriers in high-level nuclear waste (HLW) repositories. This is because migration of radionuclides from an underground HLW repository to the geosphere may be significantly reduced by sorption of radionuclides (e.g., Pu, U and Np) onto sheet silicates (e.g., clays and micas) that line the fractures and pores of the rocks along groundwater flowpaths. In addition to surface sorption, it has been suggested that some sheet silicates may also be able to incorporate many radionuclides, such as Cs and Sr, in the inter-layer sites of the sheet structure. However, theability of the sheet silicates to incorporate radionuclides and retard release and migration of radionuclides may be significantly affected by the near-field radiation due to the decay of fission products and actinides. for example, the unique properties of the sheet structures will be lost completely if the structure becomes amorphous due to irradiation effects. Thus, the study of irradiation effects on sheet-structures, such as structural damage and modification of chemical properties, are critical to the performance assessment of long-term repository behavior.'

Physical Description

4 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00013657
  • Report No.: EMSP-54691--97
  • Grant Number: FG07-97ER45652
  • DOI: 10.2172/13657 | External Link
  • Office of Scientific & Technical Information Report Number: 13657
  • Archival Resource Key: ark:/67531/metadc622104

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 25, 1997

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • June 13, 2016, 6:16 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wang, L.M. & Ewing, R.C. Radiation effects on materials in the near-field of a nuclear waste repository. 1997 annual progress report, report, November 25, 1997; United States. (https://digital.library.unt.edu/ark:/67531/metadc622104/: accessed May 19, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.