TECHNICAL PROGRESS REPORT

For the Period:

January 1, 1992 through March 31, 1992

Prepared For:

Rosebud SynCoal Partnership
Advanced Coal Conversion Process Demonstration
Colstrip, Montana

DOE Contract
DE-FC22-90PC89664

Prepared By:

Western Energy Company
Colstrip, Montana

May 1992

For Submittal to:

United States Department of Energy
Pittsburgh Energy Technology Center

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared by Western Energy Company pursuant to a cooperative agreement partially funded by the U.S. Department of Energy and neither Western Energy Company nor any of its subcontractors nor the U.S. Department of Energy nor any person acting on behalf of either:

(a) Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report; or

(b) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

The process described herein is a fully patented process. In disclosing design and operating characteristics, neither Western Energy Company nor Rosebud SynCoal Partnership release any patent ownership rights.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Department of Energy. The views and opinion of authors expressed herein do not necessarily state or reflect those of the U.S. Department of Energy.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction and Purpose</td>
<td>1</td>
</tr>
<tr>
<td>2.0 Project Progress Summary</td>
<td>2</td>
</tr>
<tr>
<td>3.0 Process Description</td>
<td>3</td>
</tr>
<tr>
<td>4.0 Technical Progress</td>
<td>8</td>
</tr>
<tr>
<td>4.1 Facility and Equipment Design</td>
<td>8</td>
</tr>
<tr>
<td>Engineering and Procurement</td>
<td></td>
</tr>
<tr>
<td>4.2 Site Construction</td>
<td>10</td>
</tr>
<tr>
<td>4.3 Permitting</td>
<td>13</td>
</tr>
<tr>
<td>4.4 Facility Startup and Testing</td>
<td>13</td>
</tr>
<tr>
<td>4.5 Production and Product Testing</td>
<td>13</td>
</tr>
<tr>
<td>5.0 Problem Areas and Lessons Learned</td>
<td>14</td>
</tr>
<tr>
<td>6.0 Future Work Areas</td>
<td>14</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION AND PURPOSE

This report contains a description of technical progress made on the Advanced Coal Conversion Process Demonstration Project (ACCP).

The project is a U.S. Department of Energy Clean Coal Technology Project. The cooperative agreement defining the project is between DOE and the Rosebud SynCoal Partnership (RSCP). The RSCP is a partnership between Western Energy Company (WECO), a subsidiary of Entech Inc., Montana Power Company’s non-utility group, and NRG Inc., a subsidiary of Northern States Power.

This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process to effect separation of the pyrite rich ash.

The process will enhance low-rank western coals, usually with a moisture content of 25-55%, sulfur content of 0.5-1.5%, and heating value of 5500-9000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,000 Btu/lb.

The 45 ton/hr unit will be located adjacent to a unit train loadout facility at Western Energy Company’s Rosebud coal mine near the town of Colstrip in southeastern Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently commercial size.
2.0 PROJECT PROGRESS SUMMARY

Original construction design and construction work is complete. Included in the construction activities were:

- Piling was installed. A total of about 26,415 linear feet of "H" pile has been driven along with about 17,900 square feet of sheet piling.

- A 1,000 ton raw coal storage silo and a 300 ton waste coal storage silo were erected.

- The concrete storage silos were erected. Twin silos 70 feet in diameter and 120 feet tall were constructed. Each silo can hold up to 6,000 tons of product coal.

- Substructure was completed. The main building foundation, infeed hopper concrete, conveyor bent foundations, and underground piping are complete. A total of about 13,000 cubic yards of concrete were poured in construction activities including substructure and concrete silos.

- The structural steel was erected. The main processing building and the screen structure were erected constituting approximately 450 tons of steel.

- Mechanical erection of facility was completed with the exception of the briquetter system. The systems erected included the in-feed system that prepares and stores raw coal for processing; the drying system including the vibrating dryers, circulating fans, and the process ductwork; the process furnace; the particulate removal system; heat rejection system; service and instrument air system; coal cleaning system; and out-feed system.

- Work on the electrical systems was completed with the exception of the briquetter. The electrical systems included the high voltage substation and motor control centers, plant control system, and instrumentation.

- The above ground fire protection system was completed. The system includes the fire pumphouse, three valvehouses, control system, and piping to the fire protected locations.

- The administration building was completed. The 6,600 square foot building contains the facility control room, electrical equipment room, warehouse, office areas, and crew change areas.

Although major plant construction is complete, minor system modifications required by initial operations were begun almost before construction was complete and are expected to continue during downtimes throughout the remaining year. Facility startup and initial production is about 80% complete. About 50 tons of dried but uncleaned coal have been produced.
3.0 PROCESS DESCRIPTION

In general the ACCP is a drying and conversion process using combustion products and superheated steam as fluidizing gas in vibrating fluidized beds. Two fluidized stages are used to heat and dry the coal and one water spray stage followed by one fluidized stage is used to cool the coal. Other systems servicing and assisting the coal conversion system are:

- Coal Cleaning
- Product Handling
- Raw Coal Handling
- Emission Control
- Heat Plant
- Heat Rejection
- Utility and Ancillary

The central processes are depicted in Figure 3.1, the Process Flow Schematic.

Coal Conversion

The coal conversion is performed in two parallel processing trains. Each consisting of two 5-feet wide by 30-feet long vibratory fluidized bed dryer/reactors in series, followed by a water spray section and a 5-feet wide by 25-feet long vibratory cooler reactor. Each processing train is fed 1,139 pounds per minute of 2 x 1/2 inch coal.

In the first-stage dryer/reactors, the coal is heated using recirculated combustion gases, removing primarily surface water from the coal. The coal exits the first-stage dryer/reactors, at a temperature slightly above that required to evaporate water. The coal exits the first stage dryer/reactor and gravity feeds the second stage dryer/reactors, which further heats the coal using a recirculating gas stream, removing water trapped in the pore structure of the coal, and promoting decarboxylation. The water making up the superheated steam used in the second stage is actually produced from the coal itself. Particle shrinkage that liberates ash minerals and imparts a unique cleaning characteristic to the coal occurs in the second stage.

As the coal exits the second-stage dryer/reactors, it falls through vertical coolers where process water is sprayed onto the coal to reduce the temperature. The water vaporized during this operation is drawn back into the second-stage dryer/reactors. After water quenching, the coal enters the vibratory coolers where the coal is contracted by cool inert gas. The coal exits the cooler at less than 150 degrees F and enters the coal cleaning system. The gas that exits the coolers is itself cooled by water sprays in contact coolers prior to returning to the coolers.
Three interrelated recirculating gas streams are used in the coal conversion system; one each for the dryer/reactors and one for the coolers.

Gases enter the process from either the natural gas fired process furnace or from the coal itself. Combustion gases from the furnace are used in the first-stage dryer/reactors after exchanging some heat to the second-stage gas stream. The second-stage gas stream is composed mainly of superheated steam. It is heated by the furnace combustion gases in the heat exchanger. The cooler gas stream is made up of cooled furnace combustion gases that have been routed to the cooler loop.

A gas route is available from the cooler gas loop to the second stage dryer/reactor loop. Gas may also enter the first-stage dryer/reactor loop from the second-stage loop (termed make-up gas) but not directly into the loop; rather the make-up gas is used as an additional fuel source in the process furnace. The final gas route is the exhaust stream from the first-stage loop to atmosphere.

Gas exchange from one loop to another is governed by pressure control on each loop, and after startup, will be minimal from the first-stage loop to the cooler loop and minimal from the cooler loop to the second-stage loop.

Gas exchange from the second-stage loop to first-stage loop (through the process furnace) may be substantial because the water vapor and hydrocarbons driven from the coal in the second-stage dryer/reactors must leave the loop to maintain a steady state.

In each gas loop, upstream of the fans, are particulate removal devices to remove dust from the gas streams, protect the fans, and control emissions.

Coal Cleaning

The coal entering the cleaning system is screened into four size fractions: plus 1/2 inch, 1/2 by 1/4 inch, 1/4 inch by 6 mesh, and minus 6 mesh. These streams are fed in parallel to four deep-bed stratifiers (stoners), where a rough specific gravity separation is made using fluidizing air and a vibratory conveying action. The light streams from the stoners are sent to the product conveyor; the heavy streams from all but the minus 6 mesh stream are sent to fluidized bed separators. The heavy fraction of the minus 6 mesh stream goes directly to the waste conveyor. The fluidized bed separators, again using air and vibration to effect a gravity separation, each split the coal into light and heavy fractions. The light stream is considered product; the heavy or waste stream is sent to a 300 ton storage bin to await transport to an off site user or alternately back to a mined out pit disposal site. The dry, cool, and clean product from coal cleaning enters the product handling system.
Product Handling

Product handling, consists of the equipment necessary to convey the clean product coal to two 6,000 ton concrete silos and to allow train loading with the existing loadout system.

Raw Coal Handling

Raw coal from the existing stockpile is screened to provide 2 x 1/2 inch feed for the ACCP process. Coal rejected by the screening operation is conveyed back to the active stockpile. Properly sized coal is conveyed to a 1000 ton raw coal storage bin which feeds the process facility.

Emission Control

Sulfur dioxide emission control philosophy is based on injecting dry sorbents into the ductwork to minimize the release of sulfur dioxide to the atmosphere. Sorbents, such as trona or sodium bicarbonate, will be injected into the first stage dryer gas stream as it leaves the first stage dryers to maximize the potential for sulfur dioxide removal while minimizing reagent usage. The sorbents, having reacted with sulfur dioxide, will be removed from the gas streams in the particulate removal systems. A 60 percent reduction in sulfur dioxide emissions should be realized.

The coal cleaning area fugitive dust is controlled by placing hoods over the sources of fugitive dust conveying the dust laden air to fabric filter(s). The bag filters can remove 99.99 percent of the coal dust from the air before discharge. All fines will report to a briquetter and ultimately the product stream.

Heat Plant

The heat required to process the coal is provided by a natural gas fired process furnace. This system is sized to provide a heat release rate of 74 MM btu/hr. Process gas enters the furnace and is heated by radiation and convection from the burning fuel. Process make gas from coal conversion will be used as fuel in the furnace.

Heat Rejection

Most heat rejection from the ACCP will be accomplished by releasing water and flue gas to the atmosphere through an exhaust stack. The stack design will allow for vapor release at an elevation great enough that, when coupled with the vertical velocity resulting from a forced draft fan, dissipation of the gases will be maximized. Heat removed from the coal in the coolers will be rejected using an atmospheric induced-draft cooling tower.
Utility and Ancillary Systems

The coal fines that will be collected in the conversion, cleaning and material handling systems are gathered and conveyed to a surge bin. The coal fines will then be agglomerated and returned to the product stream.

Inert gas will be provided by cooling and drying combustion flue gases. This gas, primary carbon dioxide and nitrogen, will be used principally for baghouse pulse and for makeup gas in the cooler loop.

The common facilities include a plant and instrument air system, a fire protection system, and a fuel gas distribution system.

The power distribution system includes a 15 KV service, a 15 KV/5 KV transformer, a 5 KV motor control center, two 5 KV/480 V transformers, a 480 V load distribution center, and a 480 V motor control center.

Control of the process is fully automated including duel control stations, duel programmable logic controllers, and a distributed plant control and data acquisition hardware.
4.0 TECHNICAL PROGRESS

4.1 Facility and Equipment Design Engineering and Procurement

Previously, work was completed on general arrangement drawings, piping and instrumentation drawings, foundation drawings, structural steel drawings, electrical drawings, and plant control system programming.

Equipment procurement was completed in 1991. Table 4.1 lists the equipment supply contracts. All major equipment procurement is now complete and the equipment has arrived at the construction site and has been installed.
<table>
<thead>
<tr>
<th>Description</th>
<th>Contractor</th>
<th>Award Date</th>
<th>Delivery Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Dryers/Coolers</td>
<td>Carrier Vibrating Equip.</td>
<td>12/21/90</td>
<td>11/20/91</td>
</tr>
<tr>
<td>Belt Conveyors</td>
<td>Willis & Paul</td>
<td>04/01/91</td>
<td>01/15/92</td>
</tr>
<tr>
<td>Bucket Elevators</td>
<td>FMC Corporation</td>
<td>03/08/91</td>
<td>08/19/91</td>
</tr>
<tr>
<td>Coal Cleaning Equipment</td>
<td>Triple S Dynamics</td>
<td>01/25/91</td>
<td>07/24/91</td>
</tr>
<tr>
<td>Coal Screen</td>
<td>Hewitt Robins</td>
<td>12/21/90</td>
<td>06/20/91</td>
</tr>
<tr>
<td>Loading Spouts</td>
<td>Midwest International</td>
<td>05/13/91</td>
<td>07/24/91</td>
</tr>
<tr>
<td>Dust Agglomerator</td>
<td>Royal Oak</td>
<td>08/26/91</td>
<td>09/05/91</td>
</tr>
<tr>
<td>Briquetter Steel</td>
<td>Salway</td>
<td>10/21/91</td>
<td>12/15/91</td>
</tr>
<tr>
<td>Silo Mass Flow Gates</td>
<td>SEI Engineers</td>
<td>04/01/91</td>
<td>07/30/91</td>
</tr>
<tr>
<td>Vibrating Bin Dischargers</td>
<td>Carman Industries</td>
<td>03/14/91</td>
<td>07/30/91</td>
</tr>
<tr>
<td>Vibrating Feeder</td>
<td>Kinergy Corporation</td>
<td>03/22/91</td>
<td>07/19/91</td>
</tr>
<tr>
<td>Drag Conveyor</td>
<td>Dynomet</td>
<td>10/05/91</td>
<td>12/26/91</td>
</tr>
<tr>
<td>Process Gas Heater</td>
<td>G.C. Broach Company</td>
<td>01/25/91</td>
<td>07/30/91</td>
</tr>
<tr>
<td>Direct Contact Cooler</td>
<td>CMI-Schnelbe Co.</td>
<td>03/06/91</td>
<td>06/27/91</td>
</tr>
<tr>
<td>Particulate Removal Equipment</td>
<td>Air Cure Howden</td>
<td>03/06/91</td>
<td>08/19/91</td>
</tr>
<tr>
<td>Dust Collectors</td>
<td>Air Cure Environmental</td>
<td>06/07/91</td>
<td>11/26/91</td>
</tr>
<tr>
<td>Air Compressors/Dryers</td>
<td>Colorado Compressor Inc.</td>
<td>03/06/91</td>
<td>09/09/91</td>
</tr>
<tr>
<td>Fire Pumps - Diesel</td>
<td>Peerless Pump</td>
<td>05/30/91</td>
<td>10/24/91</td>
</tr>
<tr>
<td>Forced Draft Fan</td>
<td>Buffalo Forge Co.</td>
<td>12/21/90</td>
<td>11/01/91</td>
</tr>
<tr>
<td>Pumps</td>
<td>Dresser Industries Inc.</td>
<td>03/07/91</td>
<td>07/16/91</td>
</tr>
<tr>
<td>Electrical Equipment - 4160</td>
<td>Toshiba International</td>
<td>03/14/91</td>
<td>08/19/91</td>
</tr>
<tr>
<td>Electrical Equipment - LDC</td>
<td>Powell</td>
<td>03/15/91</td>
<td>07/10/91</td>
</tr>
<tr>
<td>Electrical Equipment - MCC</td>
<td>Siemens</td>
<td>03/14/91</td>
<td>07/31/91</td>
</tr>
<tr>
<td>Main Transformer</td>
<td>ABB Power Company</td>
<td>01/04/91</td>
<td>08/12/91</td>
</tr>
<tr>
<td>Control Panels</td>
<td>Utility Control & Equipment Co.</td>
<td>03/08/91</td>
<td>08/20/91</td>
</tr>
<tr>
<td>Control Valves</td>
<td>Applied Control Equipment</td>
<td>05/24/91</td>
<td>09/03/91</td>
</tr>
<tr>
<td>Plant Control System</td>
<td>GE Supply Company</td>
<td>02/08/91</td>
<td>04/01/91</td>
</tr>
<tr>
<td>Cooling Tower</td>
<td>JL Herman & Marley</td>
<td>02/01/91</td>
<td>06/24/91</td>
</tr>
<tr>
<td>Dampers</td>
<td>Effox Inc.</td>
<td>05/01/91</td>
<td>08/07/91</td>
</tr>
<tr>
<td>Dry Sorbent Injection System</td>
<td>NaTech Resources Inc.</td>
<td>04/19/91</td>
<td>07/22/91</td>
</tr>
<tr>
<td>Expansion Joints</td>
<td>Flaxonics</td>
<td>05/23/91</td>
<td>11/22/91</td>
</tr>
</tbody>
</table>
4.2 Site Construction

Original construction design and construction work is complete. Included in the construction activities were:

- Piling was installed. A total of about 26,415 linear feet of "H" pile has been driven along with about 17,900 square feet of sheet piling.

- A 1,000 ton raw coal storage silo and a 300 ton waste coal storage silo were erected.

- The concrete storage silos were erected. Twin silos 70 feet in diameter and 120 feet tall were constructed. Each silo can hold up to 6,000 tons of product coal.

- Substructure was completed. The main building foundation, infeed hopper concrete, conveyor bent foundations, and underground piping are complete. A total of about 13,000 cubic yards of concrete were poured in construction activities including substructure and concrete silos.

- The structural steel was erected. The main processing building and the screen structure were erected constituting approximately 450 tons of steel.

- Mechanical erection of facility was completed with the exception of the briquetter system. The systems erected included the in-feed system that prepares and stores raw coal for processing; the drying system including the vibrating dryers, circulating fans, and the process ductwork; the process furnace; the particulate removal system; heat rejection system; service and instrument air system; coal cleaning system; and out-feed system.

- Work on the electrical systems was completed with the exception of the briquetter. The electrical systems included the high voltage substation and motor control centers, plant control system, and instrumentation.

- The above ground fire protection system was completed. The system includes the fire pumphouse, three valvehouses, control system, and piping to the fire protected locations.

- The administration building was completed. The 6,600 square foot building contains the facility control room, electrical equipment room, warehouse, office areas, and crew change areas.

Although major plant construction is complete, minor system modifications required by initial operations were begun almost before construction was complete and are expected to continue during downtimes throughout the remaining year. Facility startup and initial production is underway. About 50 tons of dried but uncleaned coal have been produced.
Facility startup and initial production is currently projected to continue through the second quarter of CY 1992. The project is currently about four months behind the partnership’s accelerated schedule and about six months ahead of the cooperative agreement schedule.
4.3 Permitting

Approval of the request for an alteration to the existing air quality permit was received in July 1991.

A request for an alteration to the existing mine permit to allow deep-pit burial of the coal cleaning process slack is in processing at the Montana Department of State Lands. A request for further information was received in June 1991. Approval for this alteration was not received in the fourth quarter of 1991 as expected; and is now expected in the first quarter of 1992.

4.4 Facility Startup and Testing

Startup activities began in November 1991. About 85% of the equipment has been at least initially operated. Initial dried coal has been produced. Initial startup is being performed by Stone and Webster Engineering.

As part of the initial production period, baseline testing of the process will be performed including compliance monitoring of the particulate removal systems. Preparation of a process test plan is complete. It includes performance tests on all process related equipment.

4.5 Production and Product Testing

Product production for 1992 is predicted to be 110,000 tons. The product will be sold to utilities and used in controlled test burns. Some initial test burn sales are already ensured.

NSP's Riverside plant will receive the first 5,000 ton test shipment for an initial test burn. Dairyland Power has committed to the next 5,000 ton test at their Alma station. Several utilities are working with RSCP to schedule tests. The process for test burns is being formulated and will include procedures for obtaining reportable data.
5.0 PROBLEM AREAS AND LESSONS LEARNED

During the reporting period, emphasis was on troubleshooting startup problems as they were identified.

Excessive vibration of the circulating gas fans was identified as a major problem. Troubleshooting were successful in reducing vibration levels to an acceptable level.

Other significant problems identified were early release of pressure relief panels, inadequate tracking of 24" conveyor belts, inadequate sealing of vibrating dryers, and an unmaintainable flame in the process furnace.

6.0 FUTURE WORK AREAS

Work continues on startup and initial operations. Once a stable and maintainable systems have been obtained, bulk production to produce test burn quantities will be one of the facility goals along with process testing and optimization.