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THE LINEAR ALGEBRAIC METHOD FOR ELECTRON-MOLECULE 
COLLISIONS 

Lee A. Collins' and Barry I. Schneider2 

Theoretical Division, Group T-4, Los Alamos National Laboratory, Los 
Alamos, NM 87545 
Physics Division, National Science Foundation, Arlington, VA 22230 

1. BASIC CONCEPTS 

In order to find numerical solutions to many problems in physics, chemistry and 
engineering it is necessary to place the equations of motion (classical or quantal) of 
the variables of dynamical interest on a discrete mesh. The formulation of scattering 
theory in quantum mechanics is no exception and leads to partial dif€erential or integral 
equations which may only be solved on digital computers. Typical approaches introduce 
a numerical grid or basis set expansion of the scattering wavefunction in order to reduce 
the  problem to the solution of a set of algebraic equations. Often it is more convenient 
to deal with the scattering matrix or phase amplitude rather than the wavefunction but 
the essential features of the numerics are unchanged. 

In this section we will formulate the Linear Algebraic Method (LAM) for electron- 
atom/molecule scattering for a simple, one-dimensional radial potential 1-2. This will 
illustrate the basic approach and enable the uninitiated reader to follow the subsequent 
discussion of the general, multi-channel, electron-molecule formulation without undue 
difficulty. We begin by writing the Schroedinger equation for the s-wave scattering of a 
structureless particle by a short-range, local potential. 

+ (V(r )  - E)!P(r) = 0 (1) 
1 d29 
2 dr2 

- -- 

By re-writing this equation in its integral form, 

Q0(r) = sin(kr) 
sin( kr<)cos( kr, ) 

k 
G(r I r') = Green's function = -2 



it becomes straightforward to i w q o r a t e  the two physical boundary conditions required 
of a standing wave solution to the scattering equation, regularity at the origin and 
incident free wave sin(kr) plus outgoing cos(kr) behavior at large distances from the 
scatterer. We now proceed by introducing a numerical quadrature with points r; and 
weights wi into the integral and then set the -ordinate r to one of the quadrature 
points. This yields, 

. 

By defining vector and matrix elements as, 

it is possible to write Eq (3) in the matrix notation, 

MIE = JEo 
M = I - G V  

as a set of linear algebraic ( LA ) equations for the unknown vector \E. These may 
be solved using Gaussian elimination or a number of other standard linear systems 
packages3 which are readily available on most computers. If the matrix GV becomes 
too large to be held in central memory, there are iterative techniques4 which may be 
employed to effect a solution of Eq (3). One such approach, the variation-iteration 
method, will be discussed in much greater detail in a subsequent section. The great 
advantage of the integral equation formulation, which becomes much more apparent 
in the multichannel scattering problem, is the numerical stability associated with the 
incorporation of the two point boundary conditions in the propagator, G.  This allows 
weakly open and closed ( exponentially decaying ) channels to be calculated in a stable 
fashion, a much more difficult process to accomplish via the propagation of the solution 
of a ( set of ) differential equation(s)’. 

2. GENERAL FOMALISM 

6-16 In this section we will formulate the general LAM for a wavefunction which 
is expanded as a sum of a close-coupled plus correlation term (CCC)I7. In addition, 
we restrict ourselves to the fixed nuclei approximation; all rotational and vibrational 
degrees of freedom will be ignored and the molecule will be taken to be fixed in space. 
Rotational and vibrational motion away from thresholds and resonances may be treated 
using the adiabatic nuclei formalism . When that is inappropriate, off-shell tech- 
niques or extensions of the close-coupled form of the equations to include rotations and 
vibrations may be invoked. These are treated in other chapters of this volume17and 
their inclusion here would add little to the present discussion. The CCC wavefunction 
may be expressed as, 
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This enables us to regard the.ve<kirs (matrices) as a set of supervedors (matrices) 
labelled by channel indices. The running index of each sub-block is the set of quadra- 
ture points. Proceeding in this fashion, we may define the elements of our vectors and 
matrices as, 

[M],,r, = 67,~' - C Go,(ri, rk )WkF,y ' (Tk ,  T j b j  
k 

which enables us to write the entire set of equations in the compact notation, 

Mf = f o  (11) 

Just as in the simple, one-dimensional example discussed earlier, the LA formulation 
has the advantage of numerical stability and conceptual simplicity. The disadvantage is 
that the practitioner must often deal with large sets of linear algebraic equations. The 
solution of these equations can be computationally and memory intensive. One useful 
approach to reduce the size of these equations is to formulate the LA problem inside a 
sphere sufficiently large to enclose the exchange/correlation region of the scatterer and 
to use more standard propagation techniques beyond that radius16. This philosophy, 
which is formally identical to the R-matrix method, allows us to treat the short-range, 
non-local interactions using the LAM inside the sphere and to integrate coupled, dif- 
ferentid equations outside the sphere. The only modification required is to alter the 
boundary conditions imposed on the Green's function from outgoing wave to some ( 
usually zero ) log-derivative condition on the R-matrix surface. The form of the LA 
equations does not change. In essence, one is solving the integral equation for the full, 
interacting Green's function, which is equal to the R-matrix when evaluated on the 
surface of the sphere. This R-matrix may then be propagated to very large distances 

, continued fraction 24 or other approaches which are via R-matrix propagation 
very efficient for coupled channel, local interactions. 
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3. NUMERICAL TECHNIQUES 

3.1. General Remarks 

Numerical techniques for the solution of the LA equations fall into two classes: 1) 
off-the-shelf methods which reduce the LA coefficient matrices to specialized forms ( i.e. 
LU factorizations, Gaussian elimination, etc.) and 2) specialized iterative techniques. 
The off-the-shelf methods almost always work and are certainly to be preferred when 
the matrices are small enough to  fit in core or are not particularly well behaved. The 
work to solve the LA equations using such techniques goes like N 3  where N is the size 
of the matrix. This is to be contrasted with iterative techniques which are dominated 
by matrix-vector multiplies and behave like N 2 M  where M is the number of iterations 
needed to achieve convergence. If M can be kept much smaller than N ,  the iterative ap- 
proach can be quite practical and valuable. A further advantage of iterative techniques 
is that they may be easily developed to take advantage of any special structure to the 
matrices in performing the computationally intensive matrix-vector multiplies. For the 
problem under consideration, there are considerable simplifications in both computa- 
tional effort and storage requirements resulting from developing a rapidly converging 

and it is described in some iterative approach. This has been done by the authors 11-12  - . -1 - ., .. 



3.2. Variation-Iteration Method 

Iterative methods have a long history in numerical analysis. The Jacobi and Gauss- 
Seidel methods4 are described in almost all textbooks dealing with iterative treatments 
of linear equations. In all of these methods one begins with some guess to the solution 
of the set of LA equations and then computes either a correction to that guess  or what 
is equivalent, an updated solution. The process is continued until there is ( essentially ) 
no change in the next member of the iteration sequence. However, there is no guarantee 
that this process will converge. The question of convergence or the lack of it can often 
be t r d  to the eigenvalue spectrum of the iteration matrix. The iteration process is 
equivalent to expanding (I - GV)-l in a power series in GV and is only justified if the 
eigenvalues of GV lie inside the unit circle, However, it is possible to combine iterative 
techniques with variational methods to  produce convergent results even when there are 
eigenvalues outside the unit circle. In essence the variational step sums the geometric 
series by solving a "small" set of algebraic equations which results from the projection of 
the full set of LA equations into the space of the iterates. Stated somewhat differently, 
the iterates are used as a set of basis vectors for the expansion of the unknown solution. 
The expansion coefficients are determined either by invoking a variational principle or 
by projecting the full set of LA equations onto the iterate space. If the iterates are a 
good basis for the expansion of the unknown solution to the LA equations, convergence 
should be rapid. However, as long as one can develop N linearly independent vectors 
over the course of the iteration process, one will eventually have enough flexibility to 
span the space of the N dimensional vectors of the full LA equations. In practice, 
if convergence is slow, there is a reasonable probability that the iteration sequence 
will produce linear dependence of the expansion vectors and this can bring the entire 
procedure to a grinding halt. The variation-iteration process may be initiated using any 
starting vector. Typically we use the "normalized" Born approximation, defined as, 

to begin the process. We then initiate the following sequence: 
1. At the nth step in the iteration process, compute an iterate via the formula, 

2. Expand the solution to the LA equations as, 

3. Determine the C; by substituting the expansion of step 2 into Eq ( 11 ) and then 
projecting onto the set of v. This yields, 

a "small" set of equations which may be solved by standard techniques. Once the C; 
have been calculated, it is possible to compute the RMS error to the set of LA equations. 



If the RMS error falls below the desiredevel, the process is stopped. 
4. If that is not the case, a new vector is computed using the Gram-Schmidt process. 

;=1 
m n  

and then return to step 1. The vectors and iterates which form the basis of this procedure 
are called a Krylov sequence ( KS ). The KS is at the heart of most iterative approaches 
to the solution of large linear systems and eigenvalue problems. The differences between 
the various methods such as the Amoldi, Generalized Minimum Residue, and Lanczos 
approaches is in how these quantities are manipulated to get the final information 
needed. The interested reader should consult the references for details18.*. The main 
concern is how to make the calculation of the matrix-vector multiply as efficient as 
possible. Fortunately, the quasi- sep arable structure of the Lip pmam- Schwinger kernel, 
facilitates some simplification. To see this in more detail, we specialize Eq ( 13 ) to the 
scattering problem. 

If we define N ,  as the number of channels, Nb as the number of basis functions, Np as 
the number of quadrature points, and the intermediate vector, 

the work required to construct Jr goes like N,2Np for a local potential and as the greater 
of the products N,NbN, or N," Nz for a non-local, separable potential. Once Jr is formed 
we compute, 

Since the Green's function may be written as, 

k, = J2.I 
j (kr) = Bessel Function v(kr) = Neumann Function 

it is possible to write the sum over the quadrature points as, 

From the basic definitions, the following relationships arise, 



Thus the forward and backward sumnations over quadrature points may be per fomd 
using recursion relations involving "one" 'matrix muliply per step. It should be noted 
that the effort required to perform the indicated recursions is identical to  that of most 
propagation approaches. By performing the operation in the forward ( backward ) 
direction for the first ( second ) of Eq (22), we can insure the numerical stability of 
the recursion scheme. Standard propagation methods for the integration of the coupled 
differential or integral equations of scattering theory rely totally on either forward or 
backward integration. This is required since the solution must be known at aome subset 
of prior points before it can "advanced". In contrast, the iterative approach always deals 
with an integrand which is known at all points in space. This enables the practitioner 
to integrate in both directions and to thus ensure numerical stability without elaborate 
stabilization procedures. 

3.3. Further Developments 

The current implementation of the LAM relies heavily on single-center expansions 
to reduce the three-dimensional equations to a larger set of one-dimensional equations. 
A serious disadvantage of this approach is the need to expand a singular, Coulomb po- 
tential away from its natural center. This often forces the spherical harmonic expansion 
to be quite slowly convergent, leading to linear systems of relatively large dimension. In 
addition, the idea of expanding an inherently multi-center charge distribution about a 
single co-ordinate system, is physically unappealing. Some recent developments, which 
can only be sketched here, will allow us to remove this limitation. At the core of the 
new approach is the recent multi-center integration scheme of Becke", already being 
successfully applied in local density functional calculations in quantum chemistry. The 
central idea is to define local, i.e. atomic, numerical grids and to then weight these such 
that any three-dimension integral will be reproduced by the s u m  of the atomic integrals. 
The weighting function for each atomic grid is chosen to be unity at the atomic nucleus 
and to go smoothly to zero at any other nucleus. By experimentation, Becke found a 
practical functional form which achieves the desired purpose in an efficient fashion. In a 
subsequent paper, Becke26 extended these ideas to the solution of the Poisson equation. 
Here he suggested the use of local spherical harmonic expansions combined using the 
weighting ideas of his first paper. Although the specifics of his numerical approach to 
the radial equations need not concern us here, it is worth pointing out that there are 
efficient, integral equation approaches to this problem which have been developed to 
solve scattering problems. We have already adapted some of these ideas to the Poisson 
equation and are now examining the inhomogeneous wave equation which forms the ba- 
sis of our variation-iteration method. We are confident that we will be able to use this 
multi-center approach to effect a totally numerical solution to the electron-polyatomic 
scattering problem. Research along these lines is already in progress and we expect to 
report some preliminary results quite soon. 

4. ELECTRON-ATOM SCATTERING I N  INTENSE FIELDS 

Physical phenomena abound for which the linear algebraic approach provides an 
effective means of explication. Those cases involving scattering of heavy or light parti- 
cles are easily discerned. However, other classes of atomic and molecular processes lend 
themselves to the technique. One particular example on which we shall concentrate con- 
cerns an atom subjected to an intense electromagnetic radiation field. We demonstrate 
t.hat t h e  basic Schroedinper eouation that describes this interaction can be tasted in 



a form closely resembling electron-scattering from a vibrating ionic diatomic molecule, 
which in turn can be solved with the LA method. We shall only present a brief overview 
of the general concepts; an exhaustive treatment and comprehensive bibliographies ap- 
pear in the book by Mittleman2’, the review article by Gavrila 32, and the papers by 
Csanak and =. 

The time-dependent (TD) Schroedinger equation in atomic units in the Ear gauge 
that describes the interaction of an electron with an infinitely massive proton and with 
a temporally-varying electric field has the form 29, 31.32 

where 
1 
2 

T(r) = --v2, 
&(r) E -1/r, 

Vj(rlt) E r - E(t) .  
The first term T represents the kinetic energy operator for the electron; the second term, 
the electrostatic interaction of the electron and proton. The final term, in which we have 
made the usual dipole approximation to the radiation field, gves the interaction of the 
electron with the electric field E(t). For the laser configurations and intensities under 
consideration, we may neglect the magnetic component and the spatial dependence 
of the electric field. We usually further simplify by taking the electric field as purely 
oscillatory 

E(t) = Eo cos(wt), 
with ]Eo1 the amplitude and w the frequency. This condition restricts attention to cases 
in which the laser pulse is long compared to the ramp times although this restriction can 
be lifted by treating multimode fields. With these caveats, the Schroedinger equation 
assumes a particularly familiar form, being the starting point for a TD perturbative 
treatment of photoionization of hydrogen. However, for our case, the electric field of 
the laser becomes comparable to or greater than the field binding the electron to the 
proton. A perturbative treatment of the radiation field becomes inappropriate. We 
therefore seek solutions to Eq.( 23) directly. 

Before embarking upon this daunting task, we explore certain limiting cases of 
Eq.(23). If we neglect VE, the field terms, we recover the usual, but mundane, Schroedinger 
equation for an electron scattering from a proton or for an hydrogen atom. The cross 
section and various T-matrix elements show no structure for such collisional events. An 
analytical solution arises in terms of Coulomb functions for the continuum and hydro- 
genic functions for the bound states. On the other hand, if we drop the electrostatic 
term V,, we obtain a Schroedinger equation describing the motion of a free electron in 
an oscillating electrical field. Somewhat surprisingly, this equation too has an analytical 
solution, termed a Klein-Volkov state34. If we form a well-defined gaussian wavepacket 
from these states, we find some rather interesting properties. First, the center of the 
packet moves as a classical electron in such an oscillating field 

r(t)’= a ( t )  = a 0 cos(wt), (28) 

where a0 is the classical displacement la o l  = Eo/w2. The packet quivers about the path 
of a freely-moving electron with an amplitude equal to la o l -  Second, the packet spreads, 

. -  -- _ -  - - .. 



Having established the basic limiting cases, we now cor?centrate on a full solution of 
Eq.(23). Many approaches have been developed for directly solving the TD Schroedinger 
equation=. However, we take a dif€erent tact and convert to a time-independent(T1) 
form that can be solved by standard electron-molecule techniques. We begin by making 
a transformation due to Kramers and Henneberger= from the laboratory frame to a 
frame tied to the oscillating electron. In the frame of the electron, the proton appears to 
oscilliate with frequency w and amplitude la ,-,I, and the eEects of the field only appear 
implicitly. The interaction becomes simply electrostatic in terms of the instantaneous 
relative position of the two particles. In a more formal sense, the frame transformation 
is effected through a simple displacement operator 

with V the usual gradient operator and a(t)  given by Eq.(28). Applying this transfor- 
mation to Eq.(23) yields a TD Schroedinger equation in the Kramers-Henneberger(KH) 
frame 

1 a [-sV2 + Vp(r + a(t))]@(rlt) = i-@(rlt), at 

where 

The transformation, as advertised, has the dec t  of replacing r with r + a(t) .  We still 
have a TD equation; however, the field term has been subsumed into the potential. In 
the KH frame, an electron approaches a charge oscillating with the field frequency - 
remenisent of scattering from a vibrating molecule. 

We convert to a TI form by invoking the usual Floquet ansatz. For a purely periodic 
potentia1 of frequency w ,  the solution of Eq.(30) has the general form 

@($) = exp[-iEi]@,(rli), 

where E is a quasi-energy associated with the electron and 9, is a periodic function. 
Since has periodic form, we can expand in terms of a Fourier series as 

m 

Substituting Eqs (32-33) into (30), multiplying through by exp[in'wt], integrating over 
a period [T = 27r/w] of the field, and using the relationship 

we find the following TI equation: 

where E, E Etnw,  and 



We have reduced the solution of the TD Sdhroedinger equation to a form [Eq.(35)] 
closely resembling a normal coupled channel scattering problem. We can further ex- 
plicate this point by observing the boundary conditions of the channel functions of 
Eq.(33). As r becomes large, the potential tends to a simple Coulombic form since I Q  01 

has a prescribed finite value 

Therefore, the channel functions go to linear combinations of regular and irregular 
Coulomb functions just as in standard electron scattering from an ion. This characterizes 
one major advantage of the KH frame over the E r[Eq.(23)] or p - A formulations. 
For the latter two cases, the electric field lingers into the asymptotic realm making 
the boundary conditions more complicated. One other interesting point involves the 
potential Vd(aolr), which has singularities at r = fao. Although the order of the 
singularities differ, the form closely resembles the two-center potential encountered in 
electron scattering from a diatomic molecule. To reinforce this similarity, we display 
in Fig.1 the single-center radial expansion coefficients of the elastic term VW. In this 
analogy, the classical displacement a0 assumes the role of the internuclear separation 
R in the molecule. Finally, since the electric field has been treated classically, we have 
not mentioned photons. However, we intuitively identify and can formally associate the 
transition from the n to n' Fourier states as the emission or absorption of n-n' photons. 
The equal spacing between Fourier states again reminds us of vibrational excitation. 
All in all, we find this analogy between the the systems very strong. To solve Eq.(35), 
we can either apply a single-center expansion or a fully numerical solution by the grid 
techniques described above. As an example, we make a partial-wave expansion as 

O O L  

with Yt, as spherical harmonic of order (.l,m). By substituting Eq.(38) into Eq.(35), 
multiplying through by fin,mn,(i.)*) integrating over angles, and using the selection rules 
for spherical harmonics, we obtain 

where 

We can now apply the usual linear-algebraic prescription directly to Eq.(39). 

5 .  APPLICATIONS: 

5.1. Scattering in Intense Fields 

As an example of an application of the LA technique to the realm of atoms inter- 



a stxng temporal electric field. The basic equations governing this process have been 
briefly reviewed in the previous section. In the absence of the laser field, the cross section 
and T-matrices as a function of electron energy exhibit no structure since the simplicity 
of the compound system prohibits Feshbach or shape resonances. However, as demon- 
strated in Fig.2, introducing the field leads to numerous Feshbach-like reSonanceS in 
the elastic T-matrix element T(0,210,2) for a photon energy of 7.35eV (.27 au) and fieId 
strength of 0.0207 au(1.5~101~ W/cm2). The origin of these captureescape resonances 
stems from a multiphoton process. The electron emits n photons and falls to an energy 
level very close to a bound state of the composite system, the hydrogen atom. This 
compound resonance state has a much longer lifetime due to its temporary trapping 
in a bound state. In order to conserve energy, the electron must absorb n photons and 
return to the continuum. The lowest resonance state in Fig.2 corresponds to a two- 
photon process resonant with the 1s bound state of H. The higher resonances involve 
a single photon with the compound states of the n=2,3, and 4 levels. This second has 
a infinite number of members engaged with the hydrogenic Rydberg series. Inelastic 
processes such as Bremstralung also occur due to unequal absorptions and emissions. 
We can also extract multiphoton ionization rates by determining the resonance widths 
near the appropriate bound state(negative E). 

5.2. Collisions of Electrons with H$ 

As another illustration of the applicability of the LAM to a wide variety of phenom- 
ena, we describe the scattering of electrons from the hydrogen molecular ion H$ in the 
regime strongly dominated by autoionizing resonances. While this seems a rather simple 
sytem, very large-scale calculations, involving many-state close-coupling formulations, 
are required to obtain accurate scattering information. We treat the basic collision 
process: 

e - +  H$ + H2+ + e-+  H$ (43) 
in which the incident electron becomes trapped in a two-electron excited state of the 
composite Hz molecule and subsequently decays to the continuum. This process mani- 
fests itself as a strong signature in the basic collisonal cross section at an energy near 
an excited state of the compound system. Such resonances provide intricate tests of 
methods as well as considerable enhancement in the collisional process. 

As an example, we shall concentrate on the energy region just below the first 
excitation threshold of the ion. The lowest lying states of H$ have symmetries: lag, la,, 
l7rU+, and l~,-. We use a generic symbol k for the channel energies, but we recognize 
that for a given total energy, the wavenumber for each channel will be different. For a 
choice of total symmetry of 'It,, the corresponding continuum states are: kT;, kr;, kag, 
and k69+ respectively. A series of bound states of the neutral molecule converge on the 
ionization thresholds of the ionic system. For example, as the principal quantum number 
n increases, the series la,n.rr,+ has a limit of a bound electron in the la, state of H t  and 
a continuum kr; electron. Similarly the series lT,+nag and lT;ns,+ converge on the 1~:. 
An electron impinging on the ion at an energy just below the la, threshold can easily be 
trapped in one of these two-electron excited states of Ha, producing resonance structure 
in the cross section. At large internuclear distances, these series remain well separated 
with those converging on the r$ thresholds lying energetically above the la, ionic level. 
However, as we decrease R, the lowest resonance states of the l.lr,+nag push below the 
lau threshold and begin to interact or mix with the higher-lying doubly-excited states 
of the la,n.rr: series. This interference among the resonance series produces interesting 



effects in the positions and widths(lifetimes) of these levels. For the positions of the 
lowest few resonances, we note a behavior indicative of curve crossings in molecular 
systems. At the R value at which the the lowest-lying state of the higher series begins 
to cross resonance states of the lower series, we observe a distinct avoided crossing, 
indicative of the changing character of the resonance. Avoided crossings of electronic 
states of the same symmetry are well known for bound states but this marked the first 
quantitative study of the corresponding phenomenon for continuum levels. In Fig.3, we 
display the width as a function of R for the lowest three resonances in lII, symmetry . 
For large R, the third lowest resonance has distictly luu3r: character and has a small 
width. As the 17r$2ug state begins to near this level, we note an enhanced feature in the 
width, characteristic of strong interfrence between the states. Once the intruder state 
has passed the 10~3~: level, the width returns to its original character. We note similar 
behavior for the crossing of the 1uu27r: level. For very small internuclear distances, 
we observe a complete reversal with the first state of the upper series now becoming 
the lowest resonance. The actual interactions are more complicated, giving rise to the 
structure of the widths. To obtain reliable values for the resonance parameters, we had 
to employ an eight-state close-coupling expansion. For a single-center expansion of four 
partial waves per state and a mesh of one hundred radial points, the LA matrices reached 
orders of several thousand. Such large, non-sparse matrices were easily treated using 
the variation/iteration approach discussed in section 3.2. Whether these effects can 
be observed in synchrotron studies will depend on the development of an experimental 
capability to excite the initial Hz to a vibrational level high enough to access the Franck- 
Condon region of the resonance. In addition, the observation of adiabatic as opposed to 
diabatic behavior of the electronic states involved in the crossing, can be influenced by 
other dynamic considerations. In any event, we hope this has demonstrated that even 
such simple systems as H2 still have much to offer for theorists to contemplate. 
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