The influence of vortex pinning and grain boundary structure on critical currents across grain boundaries in YBa{sub 2}Cu{sub 3}O{sub x}.

PDF Version Also Available for Download.

Description

We have used studies of single grain boundaries in YBCO thin films and bulk bicrystals to study the influence of vortex pinning along a grain boundary on dissipation. The critical current density for transport across grain boundaries in thin films is typically more than an order of magnitude larger than that measured for transport across grain boundaries in bulk samples. For low disorientation angles, the difference in critical current density within the grains that form the boundary can contribute to the substantial differences in current density measured across the boundary. However, substantial differences exist in the critical current density across ... continued below

Physical Description

7 p.

Creation Information

Miller, D. J. October 27, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We have used studies of single grain boundaries in YBCO thin films and bulk bicrystals to study the influence of vortex pinning along a grain boundary on dissipation. The critical current density for transport across grain boundaries in thin films is typically more than an order of magnitude larger than that measured for transport across grain boundaries in bulk samples. For low disorientation angles, the difference in critical current density within the grains that form the boundary can contribute to the substantial differences in current density measured across the boundary. However, substantial differences exist in the critical current density across boundaries in thin film compared to bulk bicrystals even in the higher angle regime in which grain boundary dissipation dominates. The differences in critical current density in this regime can be understood on the basis of vortex pinning along the boundary.

Physical Description

7 p.

Notes

INIS; OSTI as DE00011067

Medium: P; Size: 7 pages

Source

  • 1998 Applied Superconductivity Conference, Palm Desert, CA (US), 09/13/1998--09/18/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/MSD/CP-97512
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11067
  • Archival Resource Key: ark:/67531/metadc621916

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 27, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 3:28 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Miller, D. J. The influence of vortex pinning and grain boundary structure on critical currents across grain boundaries in YBa{sub 2}Cu{sub 3}O{sub x}., article, October 27, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc621916/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.