Development of integrated mechanistically-based degradation-mode models for performance assessment of high-level waste containers

PDF Version Also Available for Download.

Description

Alloy 22 [UNS NO60221] is now being considered for construction of high level waste containers to be emplaced at Yucca Mountain and elsewhere. In essence, this alloy is 21% Cr, 13% MO, 4% Fe, 3% W, 2% Co, with the balance being Ni. Variants without tungsten are also being considered. Detailed mechanistic models have been developed to account for the corrosion of Alloy 22 surfaces in crevices that will inevitably form. Such occluded areas experience substantial decreases in pH, with corresponding elevations in chloride concentration. Experimental work has been undertaken to validate the crevice corrosion model, including parallel studies with ... continued below

Physical Description

913 Kilobytes pages

Creation Information

Farmer, J C; McCright, R D; Estill, J C & Gordon, S R November 2, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Alloy 22 [UNS NO60221] is now being considered for construction of high level waste containers to be emplaced at Yucca Mountain and elsewhere. In essence, this alloy is 21% Cr, 13% MO, 4% Fe, 3% W, 2% Co, with the balance being Ni. Variants without tungsten are also being considered. Detailed mechanistic models have been developed to account for the corrosion of Alloy 22 surfaces in crevices that will inevitably form. Such occluded areas experience substantial decreases in pH, with corresponding elevations in chloride concentration. Experimental work has been undertaken to validate the crevice corrosion model, including parallel studies with 304 stainless steel.

Physical Description

913 Kilobytes pages

Source

  • 1998 Materials Research Society Annual Meeting, Boston, MA (US), 11/28/1998--12/02/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-130811
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/289586 | External Link
  • Office of Scientific & Technical Information Report Number: 14714
  • Archival Resource Key: ark:/67531/metadc621911

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 2, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 2:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Farmer, J C; McCright, R D; Estill, J C & Gordon, S R. Development of integrated mechanistically-based degradation-mode models for performance assessment of high-level waste containers, article, November 2, 1998; California. (digital.library.unt.edu/ark:/67531/metadc621911/: accessed November 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.