The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite

PDF Version Also Available for Download.

Description

The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH{sub 3}I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, ... continued below

Physical Description

328 p.

Creation Information

Jubin, R.T. December 1, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 76 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH{sub 3}I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, only bulk loading data exist for the adsorption of CH{sub 3}I onto Ag-Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process. It can be concluded from the analysis of the experimental data obtained by the single-pellet type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH{sub 3}I onto Ag-Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 {times} 10{sup {minus}14} cm{sup 2}/s. The system was also shown to be isothermal under all conditions of this study. Two other conclusions were also obtained. First, the gas film resistance to mass transfer for the 1/16 and 1/8-in.-diam Ag-Z pellets can be ignored under the conditions used in this study. Finally, it was shown that by decreasing the water vapor content of the feed gas, the chemical reaction rate appeared to become the initial rate-limiting factor for the mass transfer. 75 refs.

Physical Description

328 p.

Notes

INIS; OSTI as DE96003137

Source

  • Other Information: DN: Thesis submitted to Univ. of Tennessee, Knoxville, TN (US); TH: Thesis (Ph.D.)

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96003137
  • Report No.: ORNL--6853
  • Grant Number: AC05-84OR21400
  • DOI: 10.2172/161458 | External Link
  • Office of Scientific & Technical Information Report Number: 161458
  • Archival Resource Key: ark:/67531/metadc621904

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1994

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Jan. 19, 2016, 7:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 76

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jubin, R.T. The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite, report, December 1, 1994; Tennessee. (digital.library.unt.edu/ark:/67531/metadc621904/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.