16 بـ647
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WAR'TMME REP(DR'T
ORIGINALLY ISSUED
August 1946 as
Advance Restricted Report Lafic

WIND-IUNNEL IITSTS AND ANAIYSIS OF THREE 10-FOOM-DIAMEIHER
THRHE-BLADE IRACTOR PROPELIEFS DIFFERTING IN
PITCH DISTRTBUIION
By Jean Gilman, Jr.

Langley Memorial Aeronautioal Laboratory , Langley Field, Va.

ADVANGE. PESTRICTED REPORT

WIND-TUNEL TESTS AND ANALYSIS OF TEREE 10-FOOT-DIAMETER THREE-BLADT TRACTOR PROPELLERS DIFFERING IN

PITCH DISTRIBUTION
By Jean Gilinan, Jr.

STMMARY

An investigation was concucted at low Mach numbers. to determine the effect of veriations in pitch distrlbution on propellar officiency. ihree lU-foot-diameter three-blace tracter propellers inounted on a streamline body were tested for a blide-angle range fram 15° to 65°.

In additus. on to the usual procedure of detemining propeller thrust and potier coefficients by force-balance measpurements, surveys were made of the total pressure in the projeller ware to determine the thrust loadings. The over-all propeller characteristics as well as the thrust and torque loadings were also determined by an analytical :nethod.

The section thrust and torque coefficients are presented for seven standard radil in a form that enables rapid cotermination of the thrust and torque loadings of the three propellers at operating conditions within the limits of the data obtained. Charts are presented that show the variation of nower coeificient fith blade-angle setting and advance-diameter ratio and that include lines of constant.efficiency. Otier charts show the variation of thrust coefficient with advance-diameter riatio at both constant blade-angle setting ana constant power coefficient. A comparison of the variation of thrust coefficient with advance-siameter ratio at several constant values of power coefficient is made to shors the relative efficiency of the three propellers for a large range of operating conditions. The efficiencies are compared at several. similated flight conditions ranging from takeoff to high speed.

For the simulated flight conditions, the induced axial and rotational components of the efficiency loss, and the component due to profile crag are evaluated and presented in tabular form. Representative distributions of these induced and nrofile-dfag losses are shown.

Gnod agreement was obtained between the calculated and measured propeller characteristics. The results indicated that high efficiencies at large edvancediameter ratios (In excess of 3.0) could be maintained if the ritch distribution were near ortimum. The induced axial-energy loss was shown to be independent of pitch distribution when the propellar was operating near peak efficjency. The induced rotational-energy loss might becons sxcessively high at large advance-diameter ratios. The losq of efficiensy dus to profile drag woild be critically dependent on the advasce-diameter ratio and the relutionshir betwesn $\sigma_{\mathcal{L}}$ aizd tin γ at a Eiven section.

IRTTMODECTION

The fdeal pitch eistribution of a propeller is the pitcli distribution that, for a ziven operating condition, will Field minimum energy losses. The incuced energy loss is a minimum when the klade loading is optimun: The profile-dras energy loss is a minimun when the procuct of the blade chord and profile-trag coefficient at each section is the least nossible for the required blade loadine. Thess requirements for minimum energy losses may je achieved for a given operating condition by following cesign nrocedures such as those set forth in references 1 to 3; which are based on the work of Betz and Goldatein.

Because of the fixed oitch distribution of a given propeller, the proper load distribution can not be maintained over a ranee of operatinc conditions. The variation from optimuri loading may become appreciable for large ranfas of operating conditions such as those" now being encountered by high-speed airplanes. The work of reference 2 shows that improperly loadins the propeller leads to apnreciable increases in induced energy losses at hish advace-diameter ratios, al though the effect is small at acivance-cliameter ratios less than approximately 2.5. In particular, the induced rotationalenergy loss is shown to become excessive if, the shank sections at hijh advence-dismeter ratios are overloaded.

The present investigation was mide in the Langley propeller-research tunnel to determine the effects of pitch distribution on propeller characteristics for a range of blade-angle settings from 15° to 65°. The program included tests at low Hach numbers of three 10-foot-diameter propellers having NACA 16-series sections and varying only in citci distribution. In this program the usual force-balance test methods were supplemented with wake surveys to determine the thrust loadings. The thrust and torqie loadings and propelier characteristics were also determined by an analifical method with two-dimensional-airfoil data.

In the prosent paner the calculated and measured propell sr characteristios are comparec and curves ane presented that show the comparative efficiencies of the thres :ropellers for a larse zange of operating coniltions. The calculated section thrust and torque coerficients were employed to evaluate the induced axialenerge and rotationalmenerey losses win the lnss cue to profile arag for several operaiting conaitions.
'The section thrust and torqua coefficients are presentea in a form that enables quick retermination of the thrust and torque loadinirs of the three propeliars at nopreting condjtions within the linits of the data nbtained.

A chart is presented that jormits a fairly rapid qualitative determination of the blade loading int any propoller. This chart was found to be quite userul as an aid in the analyais of the results of this investigation.

STRBOLS ATD COEFFIGIERTS

a	axigl inflow factor (fig. 1)
a^{\prime}	rotational inflow factor (fige.ll).
B	.number of propeller טlades
b	blade sectiön chord, feet
C_{D}	
${ }^{C}$	seotion lift coefficiont $\left(\frac{d L}{\frac{6}{2} H^{2}}\right)\left(\frac{1}{2}{ }^{\text {ib }}\right.$)

$\mathrm{C}_{\text {II }} \quad \therefore$ section design lift: coefficient
C_{P}
power coefficient (P/Pn3D5)

D . . propeller diameter, feet
$4 D$ change in body drag due to propeller slip r stream, pounds
CD : section profile drag, wounds (fig. 1)

$\alpha G_{T} / d x \quad$ section thrust coefficient $\left(\frac{d T / d x}{\left(\rho n^{2} D^{L}\right.}\right)$
cL section lift, om and $\left(\frac{\mathrm{C}_{\mathrm{L}} \mathrm{pw}^{2} \mathrm{~b} \mathrm{dr}}{2}\right):(f 1 g \cdot 1)$
did /r section torque force, pounds (fig. l)
XT section thrust force, pounds (is. l).
T_{a} energy lost to axial momentum in propeller wake, foot-pounds per second
${ }^{\Sigma_{D}}$
energy lost through profile crag, foot-pounds per second
E_{r}

F
ΔH
h maximum thickness of blade section, feet
energy lost to rotational momentum in propellet wake, foot-nounds per second

Foldstein correction factor for finite number of blades
total-pressure rise in propeller wake, pounds per square foot
J. . advance-diametar ration (V / nD)
\ddot{n}

P

Q
q
R
\mathbf{r}

T
T_{2}

W
:No
\mathbf{w}_{1}
x radius ratio (r / R)
$x_{0} \quad$... radius ratio at spinner juncture
a . section angle of attack; degrees (fig. I)
β blade-section angle, degrees (fig. 1)
$r=\tan ^{-1} \frac{C_{D}}{C_{L}}$
ε
propeller rotational speed, revolutions per
second :
power absorbed by propeller, : foot-pounds per
second (2miq)
torque of propeller, foot-pounds
free-stream dynamic pressure; pounds peri square foot $\left(\rho V^{2} / 2\right)$
radius to propeller tip, feet
radius to propeller element, feet
shaft tension, pounds
propulsive thrust, pounds (T - $\Delta \mathrm{D}$)
fres-stream velocity, feet per second
Incal axial velocity, propeller removed, feet per second
true resultant velocity, feet per second (rig. 1)
gecmetric resultant velocity, feet per second (fi gl)
total interference velocity at airfoil, feet per second (fig. 1)
angle of inflow, degrees (fig. 1)

$$
\left(\tan ^{-1} \frac{\sigma C_{I}}{4 F \sin \phi}\right)
$$

 foot
 σ section solidity ($\mathrm{Bb} / 2 \pi r$)
\varnothing aerodynamic hellx angle, degrees (fig. 1)

$\psi \quad a n g l e$ of twist in propeller slipstream, degrees

EQUATIONS ANTD METHODS OF ANALYSIS

For the determination of section thrust coefficient $\mathrm{dC}_{\mathrm{T}} / \mathrm{dx}$ from the waxe pressure measurements, a convenient equation is given in reference 4 that trensposes to

$$
\begin{equation*}
\frac{d C_{T}}{d x}=\frac{\Delta H}{q} \frac{\pi}{4} J^{2} x \tag{1}
\end{equation*}
$$

Section thrust and torque coefficients were calcuiated by the method given in reference 5. The airfoil characteristics shown in figure 2 for NACA 16-series oropeller sections were used in the calculations. These airfoil data were interpolated from reference 6. The free-stream velocity distribution was assumed to be uniform and the calculations were based on the cropeller design dimensions.

Equations for evaluating the induced fractional energy losses were taken from reference 2. The fractional energy lost to axial mementum is

$$
\begin{equation*}
\frac{E_{\mathrm{g}}}{-P}=\frac{J}{C_{P}} \int_{x_{0}}^{1.0} a \frac{d C_{T}}{d x} d x \tag{2}
\end{equation*}
$$

and to rotational momentum
where

$$
\begin{equation*}
\frac{E_{r}}{P}=\frac{1}{C_{Q}} \int_{x_{0}}^{1.0} a^{\frac{d C_{Q}}{d x} d x} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
a=\frac{-1+\sqrt{1+\frac{4 \frac{d C T}{d x}}{\pi J^{2} x F}}}{2} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
a^{\prime}=\frac{d C_{Q}}{d x} \frac{2}{\pi^{2} J x^{3}(1+a) F} \tag{5}
\end{equation*}
$$

The value of x_{0} for this investigation is 0.236 for all thine propellers.

The fractional energy loss due to profile drag is

$$
\begin{equation*}
\frac{E_{D}}{P}=\frac{1}{C_{Q}} \int_{x_{0}}^{1.0}\left(1-\eta_{1}^{\prime}\right) \frac{\mathrm{dC}_{Q}}{d x} d x \tag{6}
\end{equation*}
$$

The value of η^{\prime} o can be shown to be

$$
\eta_{0}^{\prime}=\frac{\tan \phi^{\circ}}{\tan (\phi+\gamma)}
$$

where

$$
\tan \phi=\frac{1+a}{1-a} \tan \phi_{0}
$$

The angle r can be determined from figure 2(b) if the operating C_{L} is known. An expression giving the operating. C_{L} can be derived from the following:

$$
\frac{d G_{T}}{d x}=\frac{B b J^{2}}{8 R} \frac{(1+a)^{2}}{\sin n^{2} \phi}\left(N_{L} \cos \varnothing-. . C_{D} \sin \phi\right)
$$

$$
\frac{d C_{Q}}{d x}=\frac{B D J^{2} x}{16 R} \frac{(I+a)^{2}}{\sin ^{2} \phi}\left(C_{L} \sin \phi+C_{D} \cos \phi\right)
$$

Eliminating C_{D} from the expressions for the section thrust and torque and solving for C_{L}. gives the following equation

$$
C_{L}=\frac{L D}{x B b J^{2}}\left(x \frac{d C_{T}}{d x}+2 \tan \phi \frac{d C_{Q}}{d x}\right) \cdot \frac{\cos \phi \sin ^{2} \phi}{(1+a)^{2}}
$$

A?PARATUS

Test Equipment

The tests were concusted in the Langley propellerresearch tunnel. A photobraph of the test setup is given as figure f and the dimensional details are shown in fisure !. A close-up of the ropeller-spinner arrangement is given as figure 5. The gap between the propeller blade and the cellulofi coverplate was one thirty-sscond of an inch all arcund.

The propellers were driven by two variable-speed 25-horsopower electrife induction motors that incorporated sprine-selsyn dynamometer equipment for measuring torque. Propelisr rotational speed was determined by means of electric tachnoneters and propeller thrust, by the tunnel thrust-balance equiment.

The total-pressure rise in the propeller wake was determinod by a horizontal rake of total-pressure tubes alon- the right-hand wadius. The radial stations at which the indivicual total-pressure tubes were located were at j0, $34,37,42,45,51,55,60.5,65,75,30$, 85, $90,95,99,103$, and 110 ne:cent of the proneller radius. The distance from the propeller center line back to the total-pressure tubes was $7 \frac{1}{2}$ inches (0.0625 D), and the minimum clearance between the blade trailing edse and the total-prescure tube at 0.30K was 0.0135D, or 1.62 inches. Pressures were recorded photographically from an mASA rocorainis multiple tube manometer, which Was inclined 60° from the vertical in order to double the magnitude of the readings.

The three nropellers selected for the investigation were the NACA 10-308-03-55, 10-308-03-45, and 10-303-03-j0 and will hereinafter. be referred to as. propellers 55S, 45 S, and 30s, respectively. The first group of mumerals in the designation denotes the propeller diameter in feet; the first digit of the second group is ten times the design lift coefficient at 0.70R; and the last two digits of the seccud group express the thickness-chord aratio at 0.70 . The third group of figures gives the solidity per blade at 0.70 R and the lest group designates the approximate blade-angle setting at 0.70 f for the deaien condition. The blade design incorporates NACA 16-serifes sections.. The activity factor for each blade is 90 or for tine three-blade tractor propellers, 270. The blade-form characteristics are shown in fícure 6, which also' includes a curve showing the desjegn lift coefficient $C_{g_{n}}$ of the airfoil section at each station. The angular twist ($1,-\mathrm{P} 0.75 \mathrm{R}$) of the blades is comprred in ifigurg $7(a)$ and curves of p / D are shown in figure 7(b).

The bladss of propeller $45 S$ were constructed of dural and conformed very closely to the design dimensions. The blades of propellers 55 S and 30 S were constructed of mahogany and varied somewhat from the design dimensions. The ilade-section angles of propeller 55S were generally within $\pm 0.25^{\circ}$ of the specified angles, but two of the blades of propeller 303 were found to be as much as 2° too high in the tip region and to vary by $\pm 1^{\circ}$ in the shank sections.

TESTS

The range of the force measurements was from zexo thrust to well beyond the stall for the blade angles of . the following teiole:

Propeller	Blade angle at (deg)									
55 S	15	25	30	55	40	45	50	55	60	--
45 S	15	25	30	35	40	45	50	55	--	65
30 S	15	25	30	35	--	4.5	--	55	--	65

The engine speed varied from a maximum of 550 rpm for low blade angles to 175 rpm for neak efficiency at $f_{0.75 R}=65^{\circ}$. The tunel airspeed varied from 90 miles per hour for the large blade angles to 37.5 miles per hour for peak efficiency at ${ }^{3} 0.75 \mathrm{R}=15^{\circ}$. The Reynolds number oassad on the chord at 0.75 n was of the order of 1×10^{6}. The resultent valocities were too low to lead to any comnressibiliti offects for the tip Mach number was alwats less than ©.j.

At each blade angle, measurements of the total pressure were made for a range of advance-diameter ratio to include only the region of peak efficiency. No attempt was made to obtain measurements under conditions of stalled operation because proviols investigations (for example, reference 4) have shown that such measurements are unreliable. The pressure measurements were not extended to include zero thrust because of the limited time avallable for testing. A velocity survey (propeller removed) was made $7 \frac{1}{2}$ inches behind the propeller disk and the results are shown in figure 8.

Blade-deflection tests of the thin wooden blades, in which a reflected-11ght-beam inethod similar to that of reference 7 was used, showed that the blade deflections were not unduly large. At a blade angle of 30° the deflection varied fror about 0.1° at an advance-diameter of 0,3 to no measurable amount at peak efficiency. At a blate angle of 55°, the deilection varied from 0.6° at a low value of J to 0.1^{0} at peak efficiency.

RESTHTS AHD DISCUUSSION

In presenting the results of this investigation of pitch distribution, the blade soction charactaristics
and propeller characteristics are discusied sejarately. The efficiencies of the three propellers are comparsd for a range of operating. conditions too show the effect of changes in the load distribution. A discussion of energy losses completes the presentation.

Blade Section Characteristics

Calculated blade-section characteristics.- The call. culated blace section charactaristics for seven standard radil are shown in figures 9 to 14 . The variation of $\mathrm{dC}_{\mathbb{T}} / \mathrm{dx}$ with J at both constünt blade-angle setting and coñstant fower coefficient for propellers 55 S , 45 S , and 30s, are shown in figures 9 to il. The corresponding values of $\mathrm{aC}_{\mathrm{Z}} / \mathrm{dx}$ are shown in figures 12 to 14 .

Iegsured blade-section characteinstics.- Curves of dCT/W Eqainst J, us hetimined from the wake pressure meascromente, are moseintect la ficuros 9 to 11 for several blede-angie settinss. Close agresment between the measured and calculated results was not realized. Some of the factors that may have affocted the results are: the flow angularity and velccity variation in the tunnel jat, the increase in stream velocity at the spinner (fig. 8), the use of interpolated alrfoilsection data, and the previously noted variation of the wooden bladss from design dimensions. Jome error wes also probably derived from the isse of a sinjle survey rake for a recent investigation (reference δ) concludes tiat mone accurate data result from walce survejs across the propelier dianeter rather than along a single radus. The measured $\frac{\mathrm{dC}_{T}}{\mathrm{dx}}$ curves, however, are generally parallel to the calculated curves. Inasmuch as the assumption of the independence or blade sections holds to a farr degree of accuracy, the measured and calculated curves of" $\mathrm{dC}_{\mathrm{T}} / \mathrm{dx}$ could possibly be brought into substantial agreement by consictring only the blade discrepancies and the actual $\frac{V_{l}}{V}$ distrioution. This procedure was not attempted, howerer, because of the uncertainty introduced by the use of a single survey rake.

Because of the unsatisfactory nature of the measured section thrust coэfficients, the discussion is confined mainly to the calculated section characteristics.

Propellez Characteristics

. The over-all chanacteristics of propellers 55S,
 show in figures 15 to 17 , respectivelys. These figures show the variation of OP_{p} with $\cdot \Psi$ ' at constant blader anfle settings and include contour lines of constant efficienoy. The operating chart for propeller 55s. (fig: 15) is of special interest because it shows that high efficiency can be obtained if the pitah distribution is, near the optimum at large advancemdiameter. ratios: . The region of peak efficiency oçours at lower advance-diameter ratios for propellers. 45 s and. 30 s (figs. 16 and 17) than for propeiler 55S. The advancediameter ratio for peak efficienoy varies with the desifn pitch distribution and, of further interest. the region of bigh efficiencies becomes more limitedas the design pitch distribution is reduced. The contour. curve of propeller 55 S f'or 9l-percent efficiency, for example, extends over a range of J from 1.8 to. about 4.0 twereas the corresponding range for propeller 45 S is from approxinately 1.9 to 3.0 and that for propeller 30S, from approximately 1.1 to 2.1.

The variation of the thrust coefficients with adrance-diameter ratio at constant blade-angle settings and also at constant. nower coefficients is shown in. flgures 18 to 20 ror propellers 55S, 45S, and 30S, respectively, The variation of C_{f} with J at. constant C_{P}, shown for all threo propellers in fisurë 21, "providès a comparison of their relative merits for a large range of operating conditions.

Comparison'of experimental and calculated propeller: characteristics. The calculated thrust and power coef-. ficieftts are shown as short-dash-Ines in figures 15 to EQ:for comparison with the measured values. The ourjes at equal : blade-anfle settinges show a varying. lack rof agreement, principally as a result of the previously nofied blade discrepancies and' the nonuniform veloaity.field. . The -calculated•results•for the metal-...... propeller (45S) are seen to be in better agreement with tho measured results. than are the calculated resilts for the wooden propellers; Wilich indicates that the blade-design discrepancies ars the more important cause of disagreement in the results of the two methods. When the calculated thrust coefficients rare compared with the experimental values at the same nower coefficient
(figs. 13 to 20), good.agreement is obtained between the two sets of data through most of the operating range.

The grod agreement between the experimental and calculated values of thrust coofficient at a given power coefficient indicates that reaconably accurate blade thrust-loading and torque-loading curves may be constructad from the calculated seetion thrust and torque coefficients shown in fizures 9 to 14. A comparison of measured and calculated thrust-loading curves at constant power coefficient is given in figure 22. Because of the pucertainty of the walce-survey data, this comparison is arproximate, but the comparison is bellevad to tend to bear out the assumption that the calculated loadings will be sinilar to the actual Joaring for a given operating coidition.
'The fincrease of flow velocity due to the spinner (propeller. ramoved) raises the question of the effact of tilis nonumform velocity distribution on the propeller characteristics. In order to determine this erfsct, the characieristics were recalculated for propeiler 45 S at $\mathrm{H}_{0} .75 \mathrm{R}=25^{\circ}$ arad 55° and a comnarison of these values with the previcusly calculated values based on a untform velocity field is shown. In the follovitag rable:

Pronetisr liss								
$\frac{v_{l}}{v}$	Blade angle at 0.75R							
	25°				55°			
	J	${ }^{C}$	C_{p}	$\eta_{\max }$	J	$\mathrm{C}_{\text {T }}$	${ }^{\text {c }}$ P	$r_{\text {max }}$
1.0	1.0	0.0:32	0.04 .30	0.900	3.3	0.0625	0.2340	0.920
From	1.0	. 0390	. 04145	. 675	3.1	. 0853	. 2910	-912

[^0]${ }^{C_{P}}$ increases with increasing: altitude and J. . increases with increasing forward speed. Valuas af . Cp and J were theredire seleated to simulate fow epeed at-sea leval, médum and high speeds at a redium alititude, and high speeds at'two high altitudes. These valies.... of C_{p}. and J and other bertiment data are preserted fn the following table:

$\left\|\begin{array}{c} \text { Flibht } \\ \text { conditioni } \end{array}\right\|$	Talien off at sea level	$\left\lvert\, \begin{gathered} \text { Climb at } \\ 33,800 \\ \text { ft } \end{gathered}\right.$	$\begin{gathered} \text { H1gh } \\ \text { speod at } \\ 33,800 . \\ \mathrm{ft} \end{gathered}$	$\begin{gathered} \text { High } \\ \text { speed at } \\ 4,200 \\ \text { ft } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { HIgh } \\ \text { speed } \mathrm{at} \\ 39,400 \\ \mathrm{ft} \end{gathered}\right.$
ρ / ρ_{0}	1.000	0.325	0.325	0.200	0.250
J	. 80	2.00	3.15	3.00	3.80
c_{P}	. 080	:246	. 21.6	. 400	. 320

It is omnhasized that compessibility effects are not considered in tilis investigation. In practice the simulated operating conditicis considered, except. possibly take-off, would probably lead to comprossibility losses that would exceed the other losses discussed herein.

The valuss from the precoding table of $J=3.15$
and $C_{p}=0.2146$ correspond to the highest efficiency of propelier 55 S on the efficiency contour curve. (See fig. 15.) Jf these values are assumed to represent high speed at altitude, maximun rate of climb at the same altitude would require the saine value of C_{P} but would reguire an advance-diameter ratio of the order of l. 2 . to 2.0 ; depering on the airplane characteristics. In. this comparison, climb is represented by $J=2.00$ and $G_{P}=0.24_{1} 6^{\text {. }}$ Take-off is usually accomplished at an advance-diameter ratio of 0.5 or less, but-in this case a value of: $J=0.80$ and a value of C_{P} of. 0.080 are ssamed. Because of the curyent lack of data on IIACA 16-series-airfoils at the larger lift coofficients, it is not possible to calculate the values of. ${ }^{\sigma_{P}}$ just mentioned for açance-diameter ratios lower than those used hereinı for olimb and, take-off.

The variation of 7 at the selected values of C_{p} is shomin in figure 23 for a range of J to include the values of J chosen for comparison. Propeller 55S is : seen to rave a higher efficiency then propellers 4 SS and 30 S - in the range of advance-diameter ratio from 2.60 to j .30 . In most of the range of J simulating climb it allitude (1.2 to 2.0) propellep 45 S is most efficient; whereas propelier $30 S$ is most eificient in take-off. The difference in efriciency in climb and take-off, howevar, is small. The values of η_{1} at the siaulated flifht conditions are summarized in table I.

Effect on Load Distribution of Changes

in Operating Conditions

The thrust-loading and tercue-loading curves shown in figures z_{4} to 28 are preseatea for the simulated filght conditions of the reecsding section. These fig. ures indicate that the differences in the loadings due to the pitch-cistribution dirferences of the three propellers are greater at hifh than at low advence-ilameter ratios fcr equal po:ser absorption,

For a given propellar the resultant force at any blade seoticn, which determines the thrust and torque at the section, depends on the square of the resultant velocity ${ }_{F} \mathrm{~F}$, and the genmetric angle of attack $\beta-\varnothing_{0}$. At constart advance-Ciameter ratio, the resultant velocities increase with Encreasins realus. With increasing advaice-diameter ratio, the resultant velocities of the inboard sections become a larger percentage of the resultant volocitiss at the tip sections. If $\hat{F} \rightarrow \varnothing_{0}$ remains constant alonis the biade, for examine, increasing the value of J increases the resultant force of the shanix soctions as comnared to that of the tip sections. The goonetric anele of attacl, however, is not nocessarily constant along the blade bit dapends on and ϕ_{0} at each section. The radial variation or \mathscr{C}_{0} at any J can be determined from thes relation

$$
\tan \phi_{0}=\frac{J}{\pi x} \frac{V_{i}}{V}
$$

The radial variation of " \varnothing_{Q} : vas calculated for a large, range -of advance-dianeter ratio, with V_{l} / V. taken to be equal to l. 0 ali alone the blade. The variation of ϕ_{0}. expressed as $\varnothing_{0}-\phi_{0}{ }_{0.75 \mathrm{R} \text { ? with }}$ at eight standard radii is shown. in figure 29: These curves. Eire. the angular twist of the resultant geometric air stream for any value of J.

The angular twist of the propeller blades has previously been expressed as β - $\mathcal{P}_{0.75 R^{\circ}}$. (See fig. 7(a).) If for some value of J under considerion the quantity $\phi_{0}-\phi_{0.75 R}$ is subtracted from the quantity \hat{F} - $\bar{P} 0.75 R^{\prime}$ the difference gives a measure of tine variation of the geometric angles of attack alone the blade. The curves of

$$
(i-+0.758)-\left(x_{0}-\phi_{0.75 \mathrm{R}}\right)
$$

for propeller $30 s$ at. J. $=3.0 \hat{0}$. and for propellor 45 S at $u=0.30$ arr shown in figures $\delta 0(a)$ and $30(b)$. The curve \because :or propeller 303 shows that for any given geometific oriole of attack: at 0.75 , we shank and tip aneles of attack will be greater, and these larger sinank and tip angle's readily account for the shape of the theist- and borque-loadins curves of propolar 30 S at $\mathrm{J}=3.80$. (See rile. 28.) The curve of

$$
\left(\beta-\beta_{0.75 R}\right)-\left(\phi_{0}-\dot{\phi}_{O_{G, 75 R}}\right) .
$$

for propeller 45 S at $J=0.80$ (fig. 30(a)) shows that the . shank angles of attack are muon larger than are the tip angles of attack. Most of tho thrust and torque load of propeller 45 is shown in fissure 24 to be located at the outboard stations in spite of the large shanks angles, the reason being threat at $J=0.80$ the resultant velocities over the shank sections are very low as cornered with the resultant velocities over the tip sections. The variation of the square of the ratio of. the shank resialtant velocity to the tip resultant velocity with advance-diamater ratio $\ddagger s$ 1? lisistrated by the following table:

J	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
$\left(N_{O_{0.30 R}}\right)^{2}$	0.125	0.191	0.280	0.376	0.469	0.546	0.675	0.765

The resultant force at a section (when profile arag is neglected) is $\frac{b C_{i} \rho H^{2} d r}{2}$. Inasmuch as the magnitude Of the vector W is very nearly the same as that of vector W_{0}, the table: just given indicates directly the increasing importance of a shank section as compared with a tip section as J is increased.

If values of $f=10.75 \mathrm{R}$ for any propeller are plotted directly in fisure 20 to the same scale as the values of $\phi_{0}-\varnothing_{0.75 R}$, values of

$$
\left(\beta-\beta_{0.75 R}\right)-\left(\phi_{0}-\phi_{0} 0.75 \mathrm{R}\right)
$$

may be readily seen. The plot therefore gives a qualitative renresentation of the angle-of-attack variation, which, with dus consideration to the radial location of tie sections, the section chords, and the value of J, gives a rough idea of the loading to be expected. For provellers incorporating sections with large values of angle of zero lift, it may be cesirable to base the angle $\dot{\beta}$ on the zero-lift line rather than on the chord line of the section.

The blade twist $\beta-F_{0.75 R}$ of a structurally practical propeller should be approximately the same as the twist of the resultant air strean to realize the best efficiency at a given J. For example, the angular blade twist of propellers $55 \mathrm{~s}, 45 \mathrm{~s}$, and 30 S is indicated in fizure 29 at $J=3.15,2.60$, and 1.40 , respectively; for each propeller the value of corresponds arproximately to peak erficiency. In each case the blade twist approximates the air-stream twist at tie value of J for peak efficiency. Deviations from the ootirmm blade twist lead to more important losses at high than at low values of J_{3} as illustrated by the r-values in table I. At $J=0,80$, for example,
the difterence in η_{7} :for propellers 45 S and 30 S . is 0.035; at $J=3.30$, the difference in η for prope1.1ers. 303 and $55 \mathrm{~s}^{\prime \prime} 1 \mathrm{~s}^{\circ} 0.083^{\prime}$

The most interesting fact brought out in figure 29 is that in order to conform to the resultant twist; the design blade twist should be inoreased as the design J is increased to a value of about 2.0 and should then be decrexased as J is further increased. If the propeller design J is about 2.0, the ulade twist fails to conform to the twist of the resultant air stream at values of .J either higher or lower then 2.0, If the valuo of the design J is 3.0 or greater, on the other hand, the blade twist. is similar to that of a propeller designed to operate at $J=1.0$.

Breakjown of Energy Losses

The induced enercy losses, $\mathrm{E}_{\mathrm{a}} / \mathrm{P}$ and $\mathrm{Fr}_{\mathrm{r}} / \mathrm{P}$, and the loss due to proitle dras $L_{j} / \sqrt{\mathrm{F}}$ were ovaluated for the five simulated flight condicions, and the results are shown in table I. The sum ni' Cnsse losses $\underline{E_{a}+E_{n^{+}}+Z_{D}}$

P

measided total fractional energ: loss $1-r_{i}$, In which the value of q is the observed value. Inasmuch as, for inconpressible flow, the value $\frac{E_{a}+E_{r}+E_{D}}{P}$ reneoserits the total rractional etiergy loss, the values of $\frac{E_{a}+E_{r}+E_{D}}{P}$ and $1-T_{i}$ in table I should be very nearly equal. The calculated fractional energ. losses closely check the measured losses in several instances, but inequalities oocur bscause of tine disorepancies beiweon the actual and calculated loadings, as indicated in flyure 22, anc also because the agreement hetwoen calculated and measursd thmest coefficients at equal nower ocefficients is not exact in all cases. The lack of acreement at equal power cosfificients is illustrated by a comparison in table I, of the integrated \mathcal{C}_{P}-values from figures $2 \operatorname{ll}_{4}$ to $2 \overline{0}$ with the $C_{p-v a l u e s ~ c h o s e n ~ f o r ~ t h e ~}^{\text {for }}$ simulated flight.conditions and by a comparison of the observed and calculated thrust coefificients. The integrated value of $\widehat{\sigma}_{\mathrm{P}}$ for propeller 30S, for example,
is 3 percent less than the C_{p}-value chosen for simulated filght at $J=3.15$, and the integrated C_{T}-value is 4 percent higher than the observed. G_{T} at $J=2.00$.
: Axial-energy losis.- The $\frac{E_{a}}{P}$:values for the three propellers in table I are of the same magnitude at any one operating condition. The axial-energy loss is a large nercentage of the total energy loss at $J=0.80$, but this percentage decreases as J increases.

Bopresentative distributions of the axial-momenturnloss factor $\frac{\mathrm{dC}_{\mathrm{T}}}{\mathrm{dx}}$ are shown in figures $31(a)$ and $32(\mathrm{a})$ for clirb and for one of the high-speed conditions. The distributions fon the cther kigh-speed conditions are similar to figure 32(a) and for take-off, compare with those for climb (fic. 31(a)). .

Tre calculated axial-ensrey losses for each simulated flight condition, are compared in table II with the optimun axial-eneray losses as determined from reference 2 for the same fliaht condition. The ontimum and calculated losses practically cofincide for each flight concition, which shows that isttio, if any, improvement in the axial-energy loss could be achieved by further. vaiying the load distribution of these three propellers.

Rotationsl-snergy loss.- The distributions of the ro:ational-energy-loss factor af $\frac{d C_{Q}}{d x}$ are shown in figurns $31(\mathrm{~b})$ and $32(\mathrm{~b})$ for climb and high speed. The distribution for take-orf is similar to.. climb and all high-apsod iistributions are comperable to that of
 that the rostional-energy loss generally tencs to increase with increasing J. Because of the heavier shank loadin:s of nropellers 45 S and 30S, the rotational losses of these propellers are. greater than those of nroneiter 55 S .

A comparison of the calculated and optimum values of $\mathrm{E}_{\mathrm{r}} / \mathrm{P}$ in table II fiadicaies that the rotationalr energy loss of propeller 55 S is about optinum throughout the operating ranje under consideration but that gains in efficiency could be realized in the case of propellers 453 and 30 S at large valnes of J .

Frofile-drag energy loss.- inxcent for the highspsed operating condition represented by $J=3.80$ the: calculated values of E_{D} / P in table I inalcats that the: loss of efficienar due to profile dag varies butslightly: The low profile-crag losses are thainit the result of the small profile arag of the thin shank sections of these propellers.

Wie distributions of the profile-arag energy
loss $\left(1-r_{1}^{\prime}\right) \frac{d C_{0}}{d x}$ are shown in figures $3 \bar{y}$ to 37 for each of the ouarating conditions. presented in table I:

Gpilication to design.- Wine forsjoing comparisons of the axial-, rotationai-, and irofile-drag energy iosses indicate that, of these three factors, for light loadings.. (near pesk officiency), the induced axial-energy loss is not suscoptiols to design treatrant insofar as pitch distribotian fa concerned. Mianses in the pitch distribution, :nwever, afzenct butic tise innucad rotational and the prorile-drae eneray but effect oach in a different mumar.

When the ansile \varnothing is small, tins valus of the induced-inflow facter al is seen in figure l to be inconsequantial compured with thet of the inflow factor a but these vilues reverse when ϕ is lerge. The encile \emptyset becones larcer, of corrse, as increases. The conaiticn for minimum indixed onergy lnss requires that

$$
x \tan \not \varnothing=\text { constant }
$$

as discussed in reference 3. For a riven operating condition, this uniform heilical wake is attained by a certain distribution of tio blade loading bC_{L}. Charts in rei'erences 1 and 3 that give the necossary distribu.tion of $b C_{L}$ to attain minimur incuced energy losses at a given operating condition show that. bC_{L} must be decreased in the shani rection as J is increased. The factor a $\frac{\mathrm{dO}_{Q}}{\mathrm{dx}}$ is thus kept as small as practicahlo in the region where large values of \varnothing are unavoidable.

Figure 29, however, shows that a propellex designed to operate at an advance-diametier riatio of roughiy 1.0 to 2.0 (for example, propellers 30 S and 45 S) may be overloaded along the inner.radil ifit is operated at values of J in excess of about 2.5. At $J=3.15$ the inboard values of a $\frac{d C_{q}}{d x}$ for propellers 45 S and $30 S$ are shown in figure $32(b)$ to be much larger than those for propeller 55S. Because of a similar overloading of the shank sections at $J=3.80$, the results in table I give values of Fr/P: for prow pellers 45 S and 30 S that are nearly double the loss in rotational energy for propeller 55S.

Propellar weisht and diameter limitations generally require heavier loadings tham tiose encountered with the propellers tested. Charts in reference 2 show that for \dot{a} given number of blades the opitinum value of E_{p} / P becomes larger if the loading is increased at a constan't J. Hence, for more heavily loaded propellers, nonoptimum load distrizutions of the type experienced by propellers 30 S and 45 S lead to rotational-energy losses more serious than the results of taole I indicate.

The profile-drag energy loss varies with C_{D} / C_{L} as indioated by the equation

$$
\pi_{0}^{\prime}=\frac{\tan \varnothing}{\tan (\phi+, r)}
$$

For a small constant value of C_{D} / C_{I}, the value of r_{1} does not change appreciably in the approximate range of ϕ^{\prime} from 20° to 70°. The vulue of η_{0}^{\prime} o decreases rapidly as the value of \emptyset_{0} decreases below about 20° or increases above about 70°.

The value of C_{D} / C_{L}, or tan γ, varies with C_{L} as shown in figure $2(b)$. Very low oporating C_{L}-values and $C_{L^{-}}$values beyond the stali produce an abrupt Increase in tan Y with a correspondins increase in the prorile-drag loss.

The profile-drag losses for the five simulated filght conditions discussed herein are of particular interest.

In taike-off, for example, the measured efflciency of. propelise 4 ís is 31.5 percent as compared with 85.0 percent for propeller-30S and. 84.1 percent for propeller 55S. Operating C_{L}-values were determined for talie-off and are presented in figure 38 . . The $C_{L}=$ valuss of proneller 45 s , nearly 0.7 , in the region of 0.50 R , are on the border of the region for an abrunt. rise of tan γ. (See fig. 2(b)). Because the airfoil section characteristics are interpolated, however, the values of C_{L} and tan γ showa must be regarded as estinates father than the actual values at the biaden Hences. although the calculatad value of : $\mathrm{E}_{\mathrm{D}} / \mathrm{P}$: for propeller 45 for talce-off only slishtly. enceeds the value for either of the other two propellers, in actuallt, the profile-irag loss could be larger then. shown - or larige enordgh to account for the discrepancy hetween the value 0.161 for $\frac{E_{a}+E_{r}+E_{D}}{P}$ and 0.185 for J. - 1), in table I. If inis supnosition is tenable, the take-off quelibies of propeiler [.5'S could be improved either by reducing tine pitch in the region of 0.5 R or by incorporeting shank sections witif a hichor critical lift coefficient.

The groc efficiancy of proveller 55 S in talce-off, 84.1 percent as cornoured with 35 percont for prot peller 30S, illustrates a previously mentioned point the similarity of the pitch cistribution of a propeller of ifin fitch ($J=3.0$ or greater $)$ to that of a propeller of low pitch. (Bee fis. 29.)

The distribution of fractional energy loss due to profile drag of nropeller 30 S in climb (fig. 34) . shows that this loss is. large in the tip reeion. By comparing in figure 29 the blade twist at the tip (bevond 0.75 R) with the resultant afir-stream twist, propeller 30 S is readily aeen to be insufficientio twisted in this region for $J=2.00$. As a result, values of G_{L} are hish in the tip region. The osti-. mated $C_{\text {L-values of all three propellers are shown in }}$ figure 59.

The distributions of fractional energy-loss due to profils crag (figs. 35 to 37) are simslar for all three of the simulated high-speed flight conditions. The estimated C_{L}-values of the three propeller's at
$J=3.15$ and $C_{P}=0.246$ are shown in figure.40. It . will be noted that the $C_{\text {L }}$ values. at the inner radil of propeller 55 S are very low and hence lead to. large values of tan γ. The resulting-low profile-drag efficiency at the inner radil does not seriously affect the propeller efficiency, hovever, because of the small contribution of these sections to the total nower absorption.

A comparison of the rotational- and profile-drag energy losses at $J=3.80$ shows that of the two losses the profile-drag loss is the more important for each impopelier. The $\mathrm{C}_{\text {L }}$-variations for this flight condition, presented in figure 41 , indicate that the C_{L}-values of all three propellers are in a favorable C_{D} / C_{L} range for most of the propellar radius. The rolationship between C_{L} and tan γ of the shank sections (from $x=0.3$ to $x=0.5$) is more favorable for propellers. 45 s and 30 s then for propeller 55S. The drag losses are shown in ficure 37 to be higher for the shank sections in the case of propeller 45 S and 30 S than for propeller 55S.

At $x=0.3$ and $J=3.60$ the angle of the resultant wind \varnothing is very large. The angle \varnothing_{0} is a close approximation to the angle \varnothing near peak efficiency, and $\%_{0}$ at $J=3.80$ is shown in fisure 29 to be about 76°. Hence, \varnothing-values in the region of 0.30 a are in the range in which only slight differences in \varnothing cause large differences in $\gamma_{0}^{\prime}{ }_{0}$, even if tan γ is the same for all three propellers. This sensitivity of the profile-drag loss to large geometric helix angles, ccupled with the large power absorption of the inner radii, has a very detrimental eflect on the efficiency of propellers 45 S and 30 S . Propeller 30 S suffers an additional profile-drag loss because of the low C Covalue at 0.70R; the "bump" in the curve of the profile-dragloss distribution of propeller 30 S (fig. 37) is the result of the increased value of $\tan \gamma$.

CONCLUSIONS

Tests were made at low Mach numbers to determine the effects of pitch distribution on propeller characteristics for a large range of operating conditions.

NAOA ARR NO. L6Ė22

The three-blade tractor propellers used were of lo-foot Clameter and embodied NACA i6-series airfoil sections. The following conclusions are besed on the results of these tests supolementel with data ointained by an analytical. method:

1. Good agreement was obtained between the measured. and calculated propeller characteristics.
2. High efficiency can be obtained if the pitch distribution is near the optimum at large advancediameter ratios.
3. A propelier of design advance-diameter ratio of 3.0 or greater would have a fisvorable loading for lower values of the advance-diameter patio in the takenoff range ($\mathrm{J}=1.0$ or lorer).
4. Variations in load distrifution have very little. effect on the magnitude of the induced axial-energy loss. near :peak efficiency.
5. The use of a propeller at other than design advance-diameter ratio might incur excessive rotationalenergy losses if the operating advancendiameter ratio is in excess of about 2.5:

Langley Memorial Aeronautical Laboratory National Advisory Comittee for Aeronsutics Langley Field, Va.

REFTRENCES

1. Crigler, John L., and Talkin, Herbort W.: Propeller Selection from Aerodynamic Considerations. NACA ACR, July 1942.
2. Crigler, John.L., and Talkin, Farbart iN.: Charts for Deternining Propeller Pfficiency. NACA AYi No. I4I29, 1944.
3. Hartman, Edwin P., and Feldman, Lewfis: Aerodynamic Problems in the Design of Efficient Propellers. NiACA ACR, fug. 1942.
4. Stickle, George W., and Crigler, John L.: Propeller Analysis from Experimental Datia. NACA Rep. No. 712, 1941.
5. Crigler, John L.: Comparison of Calculated and Experimental Propeller Gharacteristics for Four-, Six-, and Eight-Blade Sizgle-Rotatiñ Propellers. NACA ACR NO. 4304 , 1944.
6. Stack, John: Tests of firfoils Designed to Delay the Compressibility Burble. NACA TX No. 376, Dec. 1944. (Reprint of ACR, June 1939.)
7. Hartman, Edwin P., and Biermann, David: The Torsional and Bendine Deflection of Full-Scale AluminumAlloy Propeller Blades under Normal Operating Conditions. NACA Rep. FFO. 64 1938.
8. Pendley, fobert E.: Effect of Proneller-Axis Angle of Attack on Thrust Distribution over the Pror peller Disk in Relation to Wake-Survey Measurement of Thrust. NACA ARR NO. L5JO2b, 1945.

TABLE I

EFFICIENCY LOSSES FOR SEVERZAL SIMULATED FLIGHT CONDITTIOMS

INDUCED IFFFICIENCY LOSSES OFF..PROPELIERS 55.S, 45S, ARD $30 S$ AND OPTIMTM. ENERGY LOSSES FOR SEVERAL SIMULATED FLIGHT CONDITIONS

Propellen	$\begin{aligned} & \text { Caloulated } \\ & E_{a} / P \end{aligned}$	Optimum $\mathrm{E}_{\mathrm{a}} / \mathrm{P}$ (a)	$\begin{gathered} \text { Calculated } \\ E_{r} / P \end{gathered}$	Optimum (a)
$\epsilon_{P}=0.080 ; J=0.80$				
55 S 45 S 30 S	a 0.090 .009 .087	$\begin{array}{r} 0.090 \\ .090 \\ .090 \end{array}$	0.019 . .023 .019	$\begin{aligned} & 0.024_{4} \\ & .024^{2} \end{aligned}$
${ }^{+} \dot{C}_{P}{ }^{\prime}=0.2 L_{4} 6 ; \quad J=2.00$				
$\begin{array}{r} \\ \hline 55 \mathrm{~S} \\ 4.5 \\ \hline\end{array}$	0.037 .033 .034	0.033 .033 .033	$\begin{array}{r} 0.036 \\ .056 \\ .037 \end{array}$	$\begin{array}{r} 0.037 \\ .037 \\ .037 \end{array}$
$C_{p}=0.246 ; \cdot \mathrm{J}=3.15$				
55 S 45 S 30 S	0.012 .009 .009	$0.01 l_{4}$ $.011_{4}$ $.01 l_{4}$	$\begin{array}{r} 0.026 \\ .034 \\ .034 \end{array}$	$\begin{array}{r} 0.025 \\ .025 \\ .025 \end{array}$
$\mathrm{C}_{\mathrm{P}}=0.400 ; \mathrm{J}=3.00{ }^{\circ}$				
55 s 45 s. 30 s.	0.019 .016 .018	0.018 .018 .018	0.043 .051 .051	$\begin{array}{r} 0.045 \\ .045 \\ .04 .5 \end{array}$
$C_{P}=0.320 ; ~ J=3.80$				
55s 45 S 30 s	$\begin{array}{r} 0.007 \\ \therefore .006 \\ .006 \end{array}$	0.010 .010 .010	$\begin{array}{r} 0.029 \\ .050 \\ .053 \end{array}$	$\begin{array}{r} 0.029 \\ .029 \\ .029 \\ \hline \end{array}$

${ }^{\text {a Optimum values are from ficures } 2 \text { and } 3 \text { of reference } 2 . ~}$

NATIONAL ADVISORY COAMITTEE FOR AERONADTICS

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure $1 .-$ Geometric relation of blade-element forces and velocities.
$X=.95$
120
.08 .12

$$
\infty
$$

.04 .08 .12
0.04 .08 .12 .16
0.04 .08 .12

NATIONAL ADVISORY
(b) Tan γ curves.

NATIONAL ADVISORY committee for aenowautics

Figure 5.- Close-up showing spinner cut-outs and celluloid cover plates.

Figure 6.- Blade-form curves and $\mathcal{C}_{L_{D}}$ distribution of liacA propeller 10-308-03.

(a) Bladetwist curves.

Figure 7.- Pitch distribution of propellers 55S, 45s, and 30 S .

(b) Geometric-pitch curves.

Figure 7.- Concluded.

Figure 8.- Velocity distribution $7 \frac{1}{2}$ inches behind propeller disk. Propeller removed.

Figure 10. - Continued.

Figure 12. - Element thrust coefficient. Propeller 30 .

$\frac{d C_{T}}{d x}$

Figure 11.- Continued.

Figure 12.- Element torque coefficients. Propeller 555.

Fiqure 13.- Element torque coefficients. Propeller 455.

Fiqure 13.- Vontinued.

Pigure 13.- Continued.

Figure 14.- Continued.

Figure 14.- Continued.

Fiqure $15 .-$ Propeller oper̈ating chont. Propener 555.

Figure 20.- Thrust- coefficient curves. Propeller 305.

(b) Propeller 45S; J, 2.03.

Figure 22.- Comparisons of measured and calculated thrust loading curves at constant power coefficient. $\beta_{C .75 R}=45^{\circ} ; c_{P}=0.2$.

(a) Take-off. $C_{P}=0.080$.

(b) Climb. $C_{P}=0.246$.

(c) High speed: $C_{p}=0.246$.

(d) High speed. $C_{p}=0.400$.

(e) High speed. $C_{p}=0.320$.
Fiquire 23. - Variation of η with U at several constant values of C_{p}.

(a) Thrust.

Figure 24.-Grading curves at take-off. $C_{P}=0.080 ; \mathrm{J}=0.80$.

(b) Torque.

Figure $24 .-$ Concluded.

(a) Thrust.

Figure 25.- Grading curves at climb. $C_{F}=0.246 ; \mathrm{J}=2.00$.

（b）Torque．
Figure 25．－Concluded．

(a) Thrust.

Figure 26.-Grading curves at high speed. $C_{P}=0.246 ; \mathrm{J}=3.15$.

(b) Torque .

Figure 26.- Concluded.

（a）Thrust．
Figure 27．－Orading curves at high speed．$C_{P}=0.400 ; \mathrm{J}=3.00$ ．

"fin Torque.
सHgure a 7 .- Concluded.

(a) Thrust.

Figure 28.- Grading curves at high speed. $C_{P}=0.320 ; \mathrm{J}=3.80$.

(b) Torque.

Fisure 28.- Corcluçed.

Figure 29.- Variation of reailant air-strean twist with advance-diameter ratio. (Air-atream twist
based on geometric helix angle with assumption of no body interference.)

Figure 30.- Variation of geometric angle of attack, based on chord line.

$$
f_{0.75 R}-\varnothing_{0_{0.75 R}}=0^{\circ}
$$

Fig. 3la,b

(a) Rotational-momentum-loss factor.

(b) Ax1al-momentum-10ss factor.

Figure 31.- Distribution of induced energy losses in climb. $C_{P}=0.246 ; \mathrm{J}=2.00$.

(a) Axial-momentum-loss factor.

Figure 32.- Distribution of induced energy losses at high speed.

$$
C_{P}=0.246 ; J=3.15
$$

$a^{\prime} \frac{d C_{Q}}{d x}$

(b) Rotational-momentum-loss factor.

Figure 32.- Concluded.

Figure 33.- Distribution of fractional energy loss due to profile drag. Take off. $\quad C_{p}=0.080 ; J=0.80$.

Figure 34.- Distribution of Iractional energy loss due to profile drag. Climb. $C_{P}=0.246 ; J=2.00$.

Figure 36.- Distribution of fractional energy loss due to profile drag. High speed. $C_{P}=0.400 ; \mathrm{J}=3.00$.

Figure 37.- Distribution of fractional energy loss due to profile drag. High speed. $C_{P}=0.320 ; \mathrm{J}=3.80$.

Figure 38. - Variation of C_{L} with x at take-off.

$$
C_{P}=0.080 ; \quad J=0.80
$$

Figure 39.- Variation of C_{L} with x at climb. $C_{P}=0.246 ; \quad \mathrm{J}=2.00$.

Figure 40.- Variation of C_{L} with x at high speed.

$$
C_{P}=0.246 ; \quad J=3.15
$$

Figure 41.- Variation of C_{L} with x at high speed. $C_{P}=0.320 ; J=3.80$.

[^0]: Comparison of rionelier efficisncies at varioias simulated illizt conctions.- Soveral values of J and C_{p} were chosell hs a besis for comparison of the propeller characteristics and ior analysis of the efficiency losses. For constini-spoec eronellers,

