Imaging diffusion with non-uniform B{sub 1} gradients.

PDF Version Also Available for Download.

Description

Rotating-frame imaging with the mathematically well-defined, non-constant magnetic field gradient of toroid cavity detectors represents a new technique to evaluate diffusion in solids, fluids or mixed-phase systems. While conventional NMR methods to measure diffusion utilize constant magnetic field gradients and, therefore, constant k-space wave numbers across the sample volume, the hyperbolic B{sub 1} fields of toroid cavity detectors exhibit large ranges of wave numbers radially distributed around the central conductor. As a consequence, signal amplitudes decay depending on the radial distance from the center axis of the torus. Applying a numerical finite-difference procedure to solve partial differential transport equations makes ... continued below

Physical Description

12 p.

Creation Information

Woelk, K. January 30, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Rotating-frame imaging with the mathematically well-defined, non-constant magnetic field gradient of toroid cavity detectors represents a new technique to evaluate diffusion in solids, fluids or mixed-phase systems. While conventional NMR methods to measure diffusion utilize constant magnetic field gradients and, therefore, constant k-space wave numbers across the sample volume, the hyperbolic B{sub 1} fields of toroid cavity detectors exhibit large ranges of wave numbers radially distributed around the central conductor. As a consequence, signal amplitudes decay depending on the radial distance from the center axis of the torus. Applying a numerical finite-difference procedure to solve partial differential transport equations makes it possible not only to determine diffusion in toroid detectors to a high precision but also to include and accurately reproduce transport phenomena at or through singularities, such as phase transitions, membranes or impermeable boundaries.

Physical Description

12 p.

Notes

OSTI as DE00010616

Medium: P; Size: 12 pages

Source

  • 4th International Conference on Magnetic Resonance Microscopy, Albuquerque, NM (US), 09/21/1998--09/25/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CMT/CP-95510
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10616
  • Archival Resource Key: ark:/67531/metadc621804

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 30, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 8:13 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Woelk, K. Imaging diffusion with non-uniform B{sub 1} gradients., article, January 30, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc621804/: accessed August 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.