Prevention for Possible Microbiologically Influenced Corrosion (MIC) in RHLWE Flush Water System (U)

by
T. C. Hsu
Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808
C. F. Jenkins

DOE Contract No. DE-AC09-89SR18035

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
PREVENTION FOR POSSIBLE MICROBIOLOGICALLY INFLUENCED CORROSION (MIC) IN RHLWE FLUSH WATER SYSTEM (U)

By

T.C. Hsu
High Level Waste Engineering Support

and

C.F. Jenkins
ASET, Materials Consultation Group

Issued: July 10, 1995

T.C. Hsu, Author, HLWE Support

DATE: 7/10/95

C.F. Jenkins, Author, ASET/MCG

DATE: 7/10/95

Paul D. d'Entremont, Technical Reviewer, HLWE

DATE: 7/10/95

H.A. Abodishish, Manager, HLWE Tech Support

DATE: 7/11/95

J.E. Marra, Manager, HLWE Support

DATE: 7/11/95

T.M. Monahon, Manager, HLWE

DATE: 7-19-95
**INTRODUCTION AND SUMMARY:**

This report is in response to the request [1] to provide a recommendation for the prevention of possible microbiologically influenced corrosion (MIC) for the RHLWE (Replacement High-Level Waste Evaporator) flush water (FW) system. The recent occurrences of MIC at DWPF [2,3] prompted HLWE to evaluate the possibility of MIC occurring in this 304L stainless steel RHLWE flush water system. Concern was heightened by the fact that the well water used and the other conditions at H-Tank Farm are similar to those at DWPF. However, only one known leak has occurred in the existing 304L evaporator flush water systems in either tank farm (in 1H system), and no MIC corrosion has been confirmed in the tank farm area. The design of the RHLWE flush water system (completed long before the occurrence of MIC at DWPF) was modeled after the existing evaporator flush water systems and did not specifically include MIC prevention considerations. Therefore, MIC prevention was not specifically considered during the design phase of this flush water system. The system is presently being installed.

Realistically, the best and most sensible engineering approach would be to operate the system as designed. If a failure should occur, the failed pipe section could be repaired or replaced and an investigation initiated to determine the cause of corrosion failure and to seek the appropriate solution. Because most of the system is above ground and located in a non-radiation zone, maintenance and repair can be readily accomplished, as needed. The few inaccessible portions of the system are located inside the evaporator cell where a high radiation field exists. Though not specifically verified, the consensus is that the high radiation field will be an effective biocide and deterrent to the growth of MIC bacteria.

After an extensive evaluation, a task team concluded that the best biocide to prevent the occurrence of MIC would be NaOH at fairly low concentration [4,5]. Sodium hydroxide (NaOH) is optimal in this application, because of its effectiveness, low cost, and familiarity to the Operations personnel (see Appendix A). However, it is the opinion of the task group that application should be withheld until MIC corrosion is demonstrated in the system.

**RECOMMENDATIONS:**

1. It is recommended that the new RHLWE flush water system be operated as designed, i.e., without inhibitor, just as the other existing FW systems have been and are operated in both tank farms. Should a failure occur in the future, repair can be made and an investigation initiated to determine the cause and to seek the appropriate solutions.

2. If and when MIC corrosion is discovered and confirmed in HLW tank farms, it is recommended that the flush water system be protected by adding sufficient NaOH to maintain a minimum pH of 10.7 (or 0.0005 M [OH-]) as inhibitor/biocide to mitigate the possibility of MIC corrosion.
HISTORICAL EXPERIENCE IN 304L EVAPORATOR FLUSH WATER SYSTEMS

The 1H evaporator flush water (FW) system has been in use since 1963; the 2H and 2F, since 1982 and 1980, respectively [6]. Of these three FW systems, only 1H has a confirmed underground leak of about 6 gallons per day [7]. Under pressure, the leak may increase three to fourfold to a maximum of about 24 gallons/day or 0.017 gpm. These are rather low volumetric flowrates and probably will not cause any serious soil erosion. The exact location of this leak is still not known. There are no known leaks in either of the other FW systems [8,9]. The evaporator flush water mass balances are recorded daily in the High Level Waste Operations Morning Reports [10].

DESCRIPTION OF RHLWE FLUSH WATER SYSTEM AND MIC PREVENTION:

The flush water system for the RHLWE uses sufficiently high pressure to flush potentially contaminated process lines and equipment. The system consists of a flush water tank, flush water pumps, and a means of heating the flush water by use of a steam injection system downstream from the pump. The design provides the means for automatic refilling of the flush water tank and a manual bypass for maintenance. Well water will be used for the process flush water supply.

Microbiologically influenced corrosion (MIC) can occur as a result of colonization of microorganisms from the environment (often natural waters). A colony thrives on nutrients from the same environment, such that a huge population generation may occur at a localized site defined by the colony. The existence of organisms in the water does not necessarily guarantee problems. Other factors are also important: water velocity, temperature, chemical additions, etc. Usually water moving at a sufficiently fast rate will effectively scrub the pipe surfaces and prevent establishment of colonies and build-up of tubercles. A stagnant situation removes the scrub advantage. In fact, the worst situation occurs under stand-by or idle conditions in untreated water systems, because all the ingredients for MIC development are usually present. Recirculation (i.e. keeping the water moving) is an alternative to biocide treatment for mitigating the tubercle growth. A velocity of 5 fps is usually suggested as adequate to prevent anchoring of microorganisms and development of tubercles and colonies, though even this is not a guarantee [11,12].

In terms of bacterial control, a pH range of 10 to 10.5 has been variously recommended [11,12] as the minimum level for preventing MIC in a recirculating cooling water system. This occurs by reducing bacterial reproductive capability [13,14]. Therefore, with sufficient NaOH, the system would be protected during the non-use periods.

From the list of identified areas [1] and the sketches of pipelines [15] that could impact the MIC potential in the RHLWE flush water system, the following negative and positive attributes were noted and identified. References [1] and [15] are attached as Appendices B and C, respectively.

NEGATIVE ATTRIBUTES:

1. Low points with no drain.
2. Long straight horizontal pipe runs without any slope (no drain).
3. Vertical pipe sections with standing water located between main horizontal lines and isolation valves.
4. Not every line is designed to be able to be blown down (emptied and dried).
5. System designed to use well water without biocide treatment.
6. Unknown details of components and their tie-ins. Components include valves, filters, strainers, etc. These, having numerous locations capable of trapping water, may be most vulnerable in cultivating bacterial growth and MIC.

Positive Attributes:

1. Accessibility - most of the pipe system is above ground (not buried) and outside of the evaporator cell.
2. Non-radiation zone - minimal contamination and radiation concerns exist for most of the system. Exposure for maintenance workers is not an issue.

This set of advantages offers the opportunity for hands-on maintenance, repair and/or replacement of corroded pipe sections or components for the major portion of the system. Normal efforts and expenses and minimal exposure to maintenance workers will occur.

REFERENCES:

DISTRIBUTION:

R.W. Wilson, 742-2G
C. A. Polson, 707-H
G. Davis, 241-100F
T.M. Monahon, 703-H
V.G. Dickert, 703-H
J.E. Marra, 703-H
R.L. Salizzoni, 707-H
E. Saldivar, 703-H
D.J. Martin, 742-4G
J.S. Ledbetter, 742-4G
L.A. Galazka, 742-4G
D.C. Bumgardner, 742-4G
J.M. Lovekamp, 704-60H
C.J. Boasso, 704-60H
D.T. O'Rear, 742-2G
R.A. DelCastilho, 742-2G
G.A. Exner, 707-1H
H.A. Abodishish, 703-H
J.A. Pike, 707-H
J.D. Cohen, 773-A
T. Capeletti, 773-41A
R.L. Bickford, 730-A
N.C. Iyer, 773-A
B.J. Wiersma, 773-A
Scientific Technical Information, 703-43A [4 copies + diskette copy]
HLWE File, 703-H [Code 1010.1]
APPENDIX A

EXHAUSTIVE EVALUATION OF OPTIONS FOR MIC PREVENTION IN THE RHLWE FLUSH WATER SYSTEM (U)

In September 1994, a task team was assembled to evaluate the RHLWE flush water system (304L). Design of the system was complete, and it was fabricated and partially installed. The main purpose was to exhaustively search and evaluate viable options to prevent possible occurrence of MIC corrosion in the flush water system. A specific goal was to define a biocide or some other means to prevent MIC in the partially installed system. The range of options considered was rather complete and thorough [1]. The conclusion is that dilute NaOH additions for pH-control is the best solution from all aspects [1,2].

DISCUSSION:

The list of options considered follows. The advantages and disadvantages of the options are indicated.

<table>
<thead>
<tr>
<th>Option Considered</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction material change</td>
<td>Depending on material, may reduce/prevent MIC</td>
<td>New design &amp; fabrication needed; costly, impractical.</td>
</tr>
<tr>
<td>Administratively controlled blowdown with periodic draining</td>
<td>Will prevent MIC, if done often enough</td>
<td>Major redesign needed - costly, impractical; procedure not acceptable to operations.</td>
</tr>
<tr>
<td>Administratively controlled periodic flush</td>
<td>Will prevent MIC, if done often enough</td>
<td>Some redesign needed; procedure not acceptable to WM Operations.</td>
</tr>
<tr>
<td>Heat treatment of FW system (165 deg F for 2 minutes)</td>
<td>Will kill off MIC bacteria, if done often enough</td>
<td>Some redesign and new equipment needed; impractical.</td>
</tr>
<tr>
<td>Take no action; repair and/or replace as needed</td>
<td>Applicable to most of the system</td>
<td>Not applicable to few portions of system being inaccessible (in evap cell).</td>
</tr>
<tr>
<td>Use steam condensate as supply for flush water</td>
<td>Bacteria would be absent</td>
<td>Large condensate volume not always available when needed.</td>
</tr>
<tr>
<td>Recirculation of flush water</td>
<td>The scrub action prevents MIC site formation</td>
<td>Major redesign needed - costly, impractical.</td>
</tr>
<tr>
<td>Chemical biocides (to be separately tabulated)</td>
<td>Appropriate chemicals can prevent bacterial growth</td>
<td>Only a few meet min req't, with their own limitations.</td>
</tr>
</tbody>
</table>
TABLE 2.
CHEMICAL BIOCIDES CONSIDERED

<table>
<thead>
<tr>
<th>Chemical Biocides</th>
<th>Conc</th>
<th>Tank Chem</th>
<th>Environmental Safety</th>
<th>Ind Hygiene</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NaOH (caustic)</td>
<td>pH = 10.7</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>Acceptable</td>
<td>pH &lt; 9</td>
</tr>
<tr>
<td></td>
<td>residual</td>
<td></td>
<td></td>
<td></td>
<td>Short life, need wkly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>replenish</td>
</tr>
<tr>
<td>3. HOBr (Towerbrom)</td>
<td>6 - 9 ppm</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td></td>
</tr>
<tr>
<td>4. AmCide 5712</td>
<td>1.5 - 14</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td></td>
</tr>
<tr>
<td>(polyoxyethylene) oz/kgm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Nalco 7320</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td></td>
</tr>
<tr>
<td>(2,2 dibromo-3-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New permit req'd ?</td>
</tr>
<tr>
<td>nitrilopropionamide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Nalco 7330</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td></td>
</tr>
<tr>
<td>(5-chloro-2-methyl-4-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New permit req'd ?</td>
</tr>
<tr>
<td>isothiazolin-3-one and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-methyl-4-isothiazolin-3-one)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Nalco 7338</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td>Req Eval</td>
<td></td>
</tr>
<tr>
<td>Glutaraldehyde)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New permit req'd ?</td>
</tr>
</tbody>
</table>

REFERENCES:


APPENDICES B & C TO FOLLOW
June 23, 1994

TO: H. A. ABODISHISH, 703-H, HLWE
FROM: D. J. MARTIN, 707-2H, HLWE/ RHLWE

MICROBIOLOGICAL CORROSION POTENTIAL FOR RHLWE FLUSH WATER SYSTEM (I)

The Flush Water system for RHLWE has been evaluated to identify potential areas where MIC (Microbiologically Influenced Corrosion) might occur. In light of recent MIC events at DWPF, a heightened awareness to the problem now exists at HLWM. Mr. Thomas Hsu of WMT has requested a summary of key areas of concern in order to determine a path for MIC-prevention in the RHLWE Flush Water System. The attached table identifies these areas based upon review of piping arrangement as currently designed. Mr. J. W. Norris of RHLWE will be available to provide further assistance as necessary.

Questions or comments may be brought to me at 7-1986 or 7-1442.

JWN:jwn

cc: M. S. Peters, 707-2H
    J. E. Marra, 703-H
    H. A. Abodishish, 703-H
    T. C. Hsu, 703-H
    D. C. Bumgardner, 707-2H
    L. A. Galazka 707-2H
    C. F. Jenkins, 730-A
    J. S. Ledbetter, 707-2H
    J. W. Norris, 707-2H
**IDENTIFICATION OF AREAS POTENTIALLY AFFECTED BY MIC IN RHLWE FLUSH WATER SYSTEM.**

<table>
<thead>
<tr>
<th>LINE #</th>
<th>DRAWING #</th>
<th>LOCATION</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW 287 to evap. seal pot</td>
<td>SE5-2-2005623&lt;br&gt;SE5-2-2005624&lt;br&gt;W833907&lt;br&gt;SE5-2-2007013</td>
<td>2ND &amp; 3RD LEVEL</td>
<td>low points exist at sect. A17- A17 and A18-A18 of SE5-2-2005624 &amp; SE5-2-2005623</td>
</tr>
<tr>
<td>FW 252 to evap. feed</td>
<td>SE5-2-2005623&lt;br&gt;W833907</td>
<td>2ND LEVEL</td>
<td>low point exists at sect. A-18 A-18, no drain</td>
</tr>
<tr>
<td>FW 253 to lower evap. spray</td>
<td>SE5-2-2005623&lt;br&gt;W833907</td>
<td>2ND LEVEL</td>
<td>low point exists at sect. A-18 A-18, no drain</td>
</tr>
<tr>
<td>FW 263 to demister spray</td>
<td>SE5-2-2005623&lt;br&gt;W833907</td>
<td>2ND LEVEL</td>
<td>low point at sect A-18 A-18, no drain</td>
</tr>
<tr>
<td>FW 264 to upper evap. spray</td>
<td>SE5-2-2005623&lt;br&gt;W833907</td>
<td>2ND LEVEL</td>
<td>low point at sect A-18 A-18, no drain</td>
</tr>
<tr>
<td>FW 265 Demister spray</td>
<td>SE5-2-2005623&lt;br&gt;W833907</td>
<td>2ND LEVEL</td>
<td>low point at sect A-18 A-18, no drain</td>
</tr>
<tr>
<td>FW 266 Evap nozzle decon spray</td>
<td>SE5-2-2005623&lt;br&gt;W833907</td>
<td>2ND LEVEL</td>
<td>low point at sect A-18 A-18, no drain</td>
</tr>
<tr>
<td>FW 299 Condenser cell</td>
<td>SE5-2-2005623&lt;br&gt;W833917&lt;br&gt;W2010502&lt;br&gt;W2005767</td>
<td>el. 335'-6&quot; to cond. cell</td>
<td>Low points at sect. A-17 A-17 of SE5-2005623 and sect. J-J of W2005767. Straight run at el. 335'-6&quot; not sloped</td>
</tr>
<tr>
<td>FW 288 Evap. dip tubes</td>
<td>SE5-2-2005623&lt;br&gt;SE5-2-2005624&lt;br&gt;(loc.J-15)&lt;br&gt;W833907&lt;br&gt;W2010502</td>
<td>3rd level el. 347'-6&quot;</td>
<td>Drains at tie-ins FW 296 FW 297, straight run not sloped.</td>
</tr>
<tr>
<td>FW 281 Anti-foam tank</td>
<td>SE5-2-2005623&lt;br&gt;SE5-2-2005624&lt;br&gt;W833908&lt;br&gt;W2010502</td>
<td>2nd and 3rd level el. 345'-9&quot;</td>
<td>No slope on straight run at 345.9&quot;. Low point drain exists on SE5-2-2005624 sect. A17-A-17</td>
</tr>
<tr>
<td>FW 283 Mercury removal tank</td>
<td>SE5-2-2005623&lt;br&gt;SE5-2-2005624&lt;br&gt;W833908&lt;br&gt;W2010384 (loc.R-21)</td>
<td>el. 316'-6&quot;</td>
<td>Straight runs have no slope. Low point drain exists on SE5-2-2005624 sect. A17-A-17</td>
</tr>
<tr>
<td>FW 295 Flash Tank</td>
<td>SE5-2-2005623 (loc. J-12)&lt;br&gt;W833910</td>
<td>el. 333'-3&quot;</td>
<td>Low point drain on FW 281 dwg. SE5-2-2005623 section A17-A17</td>
</tr>
<tr>
<td>LINE #</td>
<td>DRAWING #</td>
<td>LOCATION</td>
<td>COMMENT</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>FW 291 to Sump Jets, Steam Lances, Steam Lifts, Level Insts.</td>
<td>SE5-2-2005624 (loc.P-12)</td>
<td>3rd level</td>
<td>low point drain on FW 281, (section A17- A17) no slope on straight runs</td>
</tr>
<tr>
<td>FW 541 Sump Jet</td>
<td>W2010502</td>
<td>3rd level</td>
<td>stagnation point above iso. vlv. see sect. y-y dwg 2010502</td>
</tr>
<tr>
<td>FW 293 Steam Lances</td>
<td>W2010502</td>
<td>3rd level</td>
<td>stagnation point above iso. vlv. see sect. A-A dwg 2010502</td>
</tr>
<tr>
<td>FW 292 Steam Lifts</td>
<td>W2010502</td>
<td>3rd level</td>
<td>stagnation point above iso. vlv. see sect. C-C dwg 2010502</td>
</tr>
<tr>
<td>FW 530 Sump Level Insts.</td>
<td>W2010502</td>
<td>3rd level</td>
<td>stagnation point above iso. vlv. see sect. y2-y2 dwg 2010502</td>
</tr>
</tbody>
</table>
1. Low point - elevation 323'-10" section A16-A16 DWG W2010502
   * drain to low point added in Rev. 2 of dwg.
   FLW - V-1082

   Note: P&ID shows drain valve in different location.

2. Section T=T DWG SE5-2-2005624 line 281 ends at nozzle to anti-foam tank. No drains exist here. Therefore piping should slope to drain to low point or to anti-foam tank. There is no capability to blow line dry without draining system.

---

Line 281

271

345' 9" see 2-6

PT 5901

AF Tnk

323'-10"

Low point

---

Diagram of the piping system.
LINE 287

SE-5-2-2007013
evac. bldg.
SE-5-2-2001934
SES-2-2005624 section A17-A17
SES-2-2005623 section A18-A18

line 287 (multiple tie in points) serves evac. through seal pot.
LINE 283

SERVES MERCURY REMOVAL TANK

One common low point of drain. Other points of stagnation will drain into tie-in points 283, 257, 260 and mercury removal tank.

LINE 283

SERVES MERCURY REMOVAL TANK

One common low point of drain. Other points of stagnation will drain into tie-in points 283, 257, 260 and mercury removal tank.