Subjet Multiplicity in Quark and Gluon Jets at D0

B. Abbott et al.
The D0 Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

September 1999

Contributed paper to EPS99 and Lepton-Photon 99,
Tampere, Finland and Stanford, California, July 15-21, 1999 and August 9-14, 1999
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Notification

This manuscript has been authored by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government Purposes.
Subjet Multiplicity in Quark and Gluon Jets at DØ

The DØ Collaboration *

Fermi National Accelerator Laboratory, Batavia, Illinois 60510
(July 28, 1999)

Abstract

We measure the subjet multiplicity M in jets reconstructed with a successive combination type of jet algorithm (k_T). We select jets with $55 < E_T < 100$ GeV and $|\eta| < 0.5$. We compare similar samples of jets at $\sqrt{s} = 1800$ and 630 GeV. The HERWIG Monte Carlo simulation predicts that 59% of the jets are gluon jets at $\sqrt{s} = 1800$ GeV, and 33% at $\sqrt{s} = 630$ GeV. Using this information, we extract the subjet multiplicity in quark (M_q) and gluon (M_g) jets. We also measure the ratio $R \equiv \frac{(M_q)_\text{obs}}{(M_g)_\text{obs}} = 1.91 \pm 0.04 (\text{stat})^{+0.23}_{-0.19} (\text{sys})$.

(DO Collaboration)

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Institute of High Energy Physics, Beijing, People's Republic of China
5Universidad de los Andes, Bogotá, Colombia
6Universidad San Francisco de Quito, Quito, Ecuador
7Institut des Sciences Nucléaires, IN2P3-CNRS, Universite de Grenoble I, Grenoble, France
8DAPNIA/Service de Physique des Particules, CEA, Saclay, France
9Panjab University, Chandigarh, India
10Delhi University, Delhi, India
11Tata Institute of Fundamental Research, Mumbai, India
12Kyungsung University, Pusan, Korea
13Seoul National University, Seoul, Korea
14CINVESTAV, Mexico City, Mexico
15Institute of Nuclear Physics, Kraków, Poland
16Institute for Theoretical and Experimental Physics, Moscow, Russia
17Moscow State University, Moscow, Russia
18Institute for High Energy Physics, Protvino, Russia
19Lancaster University, Lancaster, United Kingdom
20University of Arizona, Tucson, Arizona 85721
21Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
22University of California, Davis, California 95616
23University of California, Irvine, California 92697
24University of California, Riverside, California 92521
25Florida State University, Tallahassee, Florida 32306
26University of Hawaii, Honolulu, Hawaii 96822
27Fermi National Accelerator Laboratory, Batavia, Illinois 60510
28University of Illinois at Chicago, Chicago, Illinois 60607
29Northern Illinois University, DeKalb, Illinois 60115
30Northwestern University, Evanston, Illinois 60208
31Indiana University, Bloomington, Indiana 47405
32University of Notre Dame, Notre Dame, Indiana 46556
33Purdue University, West Lafayette, Indiana 47907
34Iowa State University, Ames, Iowa 50011
35University of Kansas, Lawrence, Kansas 66045
36Kansas State University, Manhattan, Kansas 66506
37Louisiana Tech University, Ruston, Louisiana 71272
38University of Maryland, College Park, Maryland 20742
39Boston University, Boston, Massachusetts 02215
40Northeastern University, Boston, Massachusetts 02115
41University of Michigan, Ann Arbor, Michigan 48109
42Michigan State University, East Lansing, Michigan 48824
43University of Nebraska, Lincoln, Nebraska 68588
44Columbia University, New York, New York 10027
45New York University, New York, New York 10003
46University of Rochester, Rochester, New York 14627
47State University of New York, Stony Brook, New York 11794
48Brookhaven National Laboratory, Upton, New York 11973
49Langston University, Langston, Oklahoma 73050
50University of Oklahoma, Norman, Oklahoma 73019
51Brown University, Providence, Rhode Island 02912
52University of Texas, Arlington, Texas 76019
53Texas A&M University, College Station, Texas 77843
54Rice University, Houston, Texas 77005
I. INTRODUCTION

The Tevatron proton-antiproton collider is a rich environment for studying high energy physics. The dominant process is jet production, described in Quantum Chromodynamics (QCD) by scattering of the elementary quark and gluon constituents of the incoming hadron beams. In leading order (LO) QCD, there are two partons in the initial and final states of the elementary process. A jet is associated with the energy and momentum of each final state parton. Experimentally, however, a jet is a cluster of energy in the calorimeter. Understanding jet structure is the motivation for the present analysis. QCD predicts that gluons radiate more than quarks. Asymptotically, the ratio of objects within gluon jets to quark jets is expected to be in the ratio of their color charges $C_A/C_F = 9/4$ [4].

II. THE k_T JET ALGORITHM

We define jets in the DØ detector [3] with the k_T algorithm [3]. The jet algorithm starts with a list of energy preclusters, formed from calorimeter cells or from particles in a Monte Carlo event generator. The preclusters are separated by $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} > 0.2$, where η and ϕ are the pseudorapidity and azimuthal angle of the preclusters. The steps of the jet algorithm are:

1. For each object i in the list, define $d_{ii} = E_{T,i}^2$, where E_T is the energy transverse to the beam. For each pair (i, j) of objects, also define $d_{ij} = \min(E_{T,i}^2, E_{T,j}^2) \frac{\Delta R_{ij}^2}{D^2}$, where D is a parameter of the jet algorithm.

2. If the minimum of all possible d_{ii} and d_{ij} is a d_{ij}, then replace objects i and j by their 4-vector sum and go to step 1. Else, the minimum is a d_{ii} so remove object i from the list and define it to be a jet.

3. If any objects are left in the list, go to step 1.

The algorithm produces a list of jets, each separated by $\Delta R > D$. For this analysis, $D = 0.5$.

The subject multiplicity is a natural observable of a k_T jet [3,3]. Subjets are defined by rerunning the k_T algorithm starting with a list of preclusters in a jet. Pairs of objects with the smallest d_{ij} are merged successively until all remaining $d_{ij} > y_{cut}^2 E_T^2 (jet)$. The resolved objects are called subjets, and the number of subjets within the jet is the subject multiplicity M. The analysis in this article uses a single resolution parameter $y_{cut} = 10^{-3}$.

III. JET SELECTION

In LO QCD, the fraction of final state jets which are gluons decreases with $x \sim E_T/\sqrt{s}$, the momentum fraction of initial state partons within the proton. For fixed E_T, the gluon jet fraction decreases when \sqrt{s} is decreased from 1800 GeV to 630 GeV. We define gluon and quark enriched jet samples with identical cuts in events at $\sqrt{s} = 1800$ and 630 GeV to reduce experimental biases and systematic effects. Of the two highest E_T jets in the event, we select jets with $55 < E_T < 100$ GeV and $|\eta| < 0.5$.

5
IV. QUARK AND GLUON SUBJET MULTIPLICITY

There is a simple method to extract a measurement of quark and gluon jets on a statistical basis, using the tools described in the previous sections. M is the subjett multiplicity in a mixed sample of quark and gluon jets. It may be written as a linear combination of subjett multiplicity in gluon and quark jets:

$$M = fM_g + (1 - f)M_q$$ \hspace{1cm} (1)

The coefficients are the fractions of gluon and quark jets in the sample, f and $(1 - f)$, respectively. Consider Eq. (1) for two similar samples of jets at $\sqrt{s} = 1800$ and 630 GeV, assuming M_g and M_q are independent of \sqrt{s}. The solutions are

$$M_g = \frac{f^{1800}M^{630} - f^{630}M^{1800}}{f^{1800} - f^{630}}$$ \hspace{1cm} (2)

$$M_q = \frac{(1 - f^{630})M^{1800} - (1 - f^{1800})M^{630}}{f^{1800} - f^{630}}$$ \hspace{1cm} (3)

where M^{1800} and M^{630} are the experimental measurements in the mixed jet samples at $\sqrt{s} = 1800$ and 630 GeV, and f^{1800} and f^{630} are the gluon jet fractions in the two samples. The method relies on knowledge of the two gluon jet fractions.

V. RESULTS

![Graph showing subjett multiplicity in fully simulated Monte Carlo quark and gluon jets. For visibility, we shift the open symbols horizontally.](image)

FIG. 1. Raw subjett multiplicity in fully simulated Monte Carlo quark and gluon jets. For visibility, we shift the open symbols horizontally.

The HERWIG 5.9 Monte Carlo event generator provides an estimate of the gluon jet fractions. The method is tested using the detector simulation and CTEQ4M PDF. We tag
every selected jet in the detector as either quark or gluon by the identity of the nearer (in $\eta \times \phi$ space) final state parton in the QCD 2-to-2 hard scatter. Fig. 2 shows that gluon jets in the detector simulation have more subjets than quark jets. The tagged subjet multiplicity distributions are similar at the two center of mass energies, verifying the assumptions in § 2.1b.

We count tagged gluon jets and find $f^{1800} = 0.59 \pm 0.02$ and $f^{630} = 0.33 \pm 0.03$, where the uncertainties are estimated from different gluon PDF's. The nominal gluon jet fractions and the Monte Carlo measurements at $\sqrt{s} = 1800$ and 630 GeV are used in Eqs. (2.5). The extracted quark and gluon jet distributions in Fig. 2 agree with the tagged distributions and demonstrate closure of the method.

![Graph showing subjet multiplicity distributions](image)

FIG. 2. Raw subjet multiplicity in jets from DØ data at $\sqrt{s} = 1800$ and 630 GeV.

Figure 2 shows the raw subjet multiplicity in DØ data at $\sqrt{s} = 1800$ GeV is higher than at $\sqrt{s} = 630$ GeV. This is consistent with the prediction that there are more gluon jets at $\sqrt{s} = 1800$ GeV compared to $\sqrt{s} = 630$ GeV, and gluons radiate more than quarks. The combination of the distributions in Fig. 2 and the gluon jet fractions gives the raw subjet multiplicity distributions in quark and gluon jets, according to Eqs. (2.5).

The quark and gluon raw subjet multiplicity distributions need separate corrections for various detector-dependent effects. These are derived from Monte Carlo, which describes the raw DØ data well. Each Monte Carlo jet in the detector simulation is matched (within $\Delta R < 0.5$) to a jet reconstructed from particles without the detector simulation. We tag detector jets as either quark or gluon, and study the subjet multiplicity in particle jets M^{part} vs. that in detector jets M^{det}. The correction unsmears M^{det} to give M^{part}, in bins of M^{det}. Figure 2 shows the corrected subjet multiplicity is clearly larger for gluon jets compared to quark jets.

The gluon jet fractions are the largest source of systematic error. We vary the gluon jet fractions by the uncertainties in an anti-correlated fashion at the two values of \sqrt{s} to measure the effect on R. The systematic errors listed in Table 2 are added in quadrature to obtain the total uncertainty in the corrected ratio $R = \frac{\langle M_{\mu} \rangle - 1}{\langle M_{\eta} \rangle - 1} = 1.91 \pm 0.04(\text{stat})^{+0.23}_{-0.19}(\text{sys})$.

7
FIG. 3. Corrected subjet multiplicity in quark and gluon jets, extracted from DØ data.

TABLE I. Systematic Errors

<table>
<thead>
<tr>
<th>Source</th>
<th>δR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluon Jet Fraction</td>
<td>$+0.18$</td>
</tr>
<tr>
<td>Jet E_T cut</td>
<td>-0.12</td>
</tr>
<tr>
<td>Detector Simulation</td>
<td>$+0.08$</td>
</tr>
<tr>
<td>Unsmearing</td>
<td>$+0.04$</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

We extract the $y_{cut} = 10^{-3}$ subjet multiplicity in quark and gluon jets from measurements of mixed jet samples at $\sqrt{s} = 1800$ and 630 GeV. On a statistical level, gluon jets have more subjets than quark jets. We measure the ratio of additional subjets in gluon jets to quark jets $R \approx 1.9 \pm 0.2$. The ratio is well described by the HERWIG parton shower Monte Carlo, and is only slightly smaller than the naive QCD prediction $9/4$.

VII. ACKNOWLEDGEMENTS

We thank the Fermilab and collaborating institution staffs for contributions to this work and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Energie Atomique (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), and CONICET and UBACyT (Argentina).
REFERENCES