Effect of gravitation on the dynamic response of tanks containing two liquids

PDF Version Also Available for Download.

Description

The exact solution to the dynamic response of circular cylindrical tanks containing two liquids, considering the gravitational (g) effect at the interface of the two liquids, is presented. Only rigid tanks were studied. The solution is expressed as the superposition of the so-called impulsive and convective solutions. The results are compared with those obtained by neglecting the gravitational effect at the interface to elucidate the g effect and with those of the tanks containing only one liquid to elucidate the effect of the interaction between two liquids. The response functions examined include the hydrodynamic pressure, base shear, base moments, sloshing ... continued below

Physical Description

14 p.

Creation Information

Tang, Yu July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The exact solution to the dynamic response of circular cylindrical tanks containing two liquids, considering the gravitational (g) effect at the interface of the two liquids, is presented. Only rigid tanks were studied. The solution is expressed as the superposition of the so-called impulsive and convective solutions. The results are compared with those obtained by neglecting the gravitational effect at the interface to elucidate the g effect and with those of the tanks containing only one liquid to elucidate the effect of the interaction between two liquids. The response functions examined include the hydrodynamic pressure, base shear, base moments, sloshing motions at surface and at the interface of two liquids, and the associated sloshing frequencies. It is found that there are two natural frequencies associated with each sloshing mode in contrast to only one frequency associated with each sloshing mode if the g effect a-t the interface is neglected; also, the convective pressure has a discontinuity at the interface of two liquids, whereas the impulsive pressure is continuous at the interface. Further, it is shown that in a tank containing two liquids the maximum sloshing wave height may increase significantly, and the fundamental frequency of the sloshing motion is lower than that of an identical tank filled with only one liquid. Additionally, the well-known mechanical model for tanks containing one liquid is generalized for tanks containing two liquids.

Physical Description

14 p.

Notes

INIS; OSTI as DE95014079

Source

  • Joint American Society of Mechanical Engineers (ASME)/Japan Society of Mechanical Engineers (JSME) pressure vessels and piping conference, Honolulu, HI (United States), 23-27 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95014079
  • Report No.: ANL/RE/CP--79448
  • Report No.: CONF-950740--70
  • DOI: 10.2172/10107572 | External Link
  • Office of Scientific & Technical Information Report Number: 100427
  • Archival Resource Key: ark:/67531/metadc621580

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Dec. 15, 2015, 6:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tang, Yu. Effect of gravitation on the dynamic response of tanks containing two liquids, article, July 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc621580/: accessed June 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.