Subsidence above in situ vitrification: Evaluation for Hanford applications

PDF Version Also Available for Download.

Description

Pacific Northwest Laboratory (PNL)is evaluating methods to extend the applicability of the in situ vitrification (ISV) process. One method being evaluated is the initiation of the ISV process in the soil subsurface rather than the traditional start from the surface. The subsurface initiation approach will permit extension of the ISV treatment depth beyond that currently demonstrated and allow selective treatment of contamination in a geologic formation. A potential issue associated with the initiation of the ISV process in the soil subsurface is the degree of subsidence and its effect on the ISV process. The reduction in soil porosity caused by ... continued below

Physical Description

100 p.

Creation Information

Dershowitz, W. S.; Plum, R. L. & Luey, J. August 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

  • Pacific Northwest Laboratory
    Publisher Info: Pacific Northwest Lab., Richland, WA (United States)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Pacific Northwest Laboratory (PNL)is evaluating methods to extend the applicability of the in situ vitrification (ISV) process. One method being evaluated is the initiation of the ISV process in the soil subsurface rather than the traditional start from the surface. The subsurface initiation approach will permit extension of the ISV treatment depth beyond that currently demonstrated and allow selective treatment of contamination in a geologic formation. A potential issue associated with the initiation of the ISV process in the soil subsurface is the degree of subsidence and its effect on the ISV process. The reduction in soil porosity caused by the vitrification process will result in a volume decrease for the vitrified soils. Typical volume reduction observed for ISV melts initiated at the surface are on the order of 20% to 30% of the melt thickness. Movement of in-situ materials into the void space created during an ISV application in the soil subsurface could result in surface settlements that affect the ISV process and the processing equipment. Golder Associates, Inc., of Redmond, Washington investigated the potential for subsidence events during application of ISV in the soil subsurface. Prediction of soil subsidence above an ISV melt required the following analyses: the effect of porosity reduction during ISV, failure of fused materials surrounding the ISV melt, bulking of disturbed materials above the melt, and propagation of strains to the surface.

Physical Description

100 p.

Notes

INIS; OSTI as DE95017601

Source

  • Other Information: PBD: Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95017601
  • Report No.: PNL--10688
  • Grant Number: AC06-76RL01830
  • DOI: 10.2172/104433 | External Link
  • Office of Scientific & Technical Information Report Number: 104433
  • Archival Resource Key: ark:/67531/metadc621564

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2016, 6:40 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 24

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Dershowitz, W. S.; Plum, R. L. & Luey, J. Subsidence above in situ vitrification: Evaluation for Hanford applications, report, August 1995; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc621564/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.