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Abstract 

New numerical simulations are presented on the self-consistent dynamics of energetic par- 

ticles and a set of unstable discrete shear A l h h  modes in a tokamak. Our code developed 

for these simulations has been previously tested in the simulations of the bumpon-tail in- 

stability model. The code has a Hamiltonian structure for the mode-particle coupling, with 

the superimposed wave damping, particle source and classical relaxation processes. In the 

alpha particle-Alfv6n wave problem, we observe a transition from a single mode saturation 

to the mode overlap and global quasilinear diffusion, which is qualitatively similar to that 

observed in the bumpon-tail model. We demonstrate a considerable enhancement in the 

wave energy due to the resonance overlap. We also demonstrate the effect of global dif€usion 

on the energetic particle losses. 1 
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I. INTRODUCTION 

There is now considerable number of investigations devoted to the study of the nonlinear 

consequences arising from the possible instability in a fusion producing experiment of the 

alpha particle products interacting with AlfvCn waves. The particular mode of concern is 

the Toroidal Alfvh Eigenmode (TAE)’t2 that can be destabilized by the universal instability 

drive3 of the energetic particle’s phase space gradient. Several experiments have observed 

this instability with energetic neutral beams4v5 or with ion cyclotron frequency heating of 

~ l a s m a s ~ > ~ ;  and several particle simulation calculations have been made describing the satu- 

ration of this 

In this work we present recent results of an approach described in Refs. 8 and 12 for 

the simpler two-stream instability problem. In past w0rks~9~~ it has been noted that the 

alpha particle-Alfv6n wave interaction can be described from the general point of view of 

weak turbulence. One starts from the equilibrium distribution function that is established 

from the balance of a source and a classical transport mechanism (in the present work the 

transport mechanism is modelled by particle annihilation). The equilibrium distribution that 

is established has ‘‘free energy” to cause instability of a discrete spectrum of waves when the 

contribution to the linear growth rate from the hot particles exceeds the damping rate of the 

wave in absence of the hot particle drive. If it is appropriate to assume that the particle- 

wave resonance interaction can be described without mode overlap occurring, the modes will 

saturate at an amplitude determined by the condition that the bounce frequency, Wb,  of a 

resonant particle trapped in the fields of the wave ( w b  is proportional to the square root of 

the field amplitude) is comparable to the linear growth rate. This scaling is evident from 

analytic analysis14 and has been demonstrated in several simulations.8-12 When resonance 

mode overlap occurs, there is an amplification of the release of the pEuticle free energy to 
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wave energy, 8~12*13 which then gives rise to 

effect using quasilinear equations has been 

global 

shown 

particle transport. 

in the proceedings 

A modelling of this 

of this conferen~e.'~ 

More quantitative understanding of the details of this transition and the consequences for 

the global transport of alpha particles, will certainly be the focus of future work. 

In this paper we indicate how the Ah&-energetic particle interaction can be cast in 

a standard form that has the same structure for resonant particles in any physical system. 

The simplest system is the one-dimensional bump-on-tail instability, for which results are 

given in Refs. 8 and 12. We start from the general Lagrangian form that describes particles 

and electromagnetic fields. To leading order, the bulk plasma motion depends only on the 

mode amplitudes of the linear waves of the system. Hence, using the results of linear theory, 

a wave Lagrangian can be formed for the combined response of the background plasma and 

the electromagnetic field, that depends only on the linear waves' amplitudes and phases. We 

then outline how the Lagrangian for the hot particles and their interaction with the linear 

waves can be reduced to a standard form. 

Finally, we present our simulation results, where we choose a set of typical TAE waves. 

These simulations will show the transition of saturation from the case when multiple waves 

are present but the resonances do not overlap, to the case when the resonances overlap and 

may produce global particle transport. 

The rest of the paper is organized as follows: 

In Sec. I1 we derive a reduced Lagrangian for the nonlinear interaction of shear Alfvh 

waves with energetic particles that resonate with the waves. We will assume that the number 

of energetic particles is relatively small, so that these particles have no effect on the spatial 

structure of the waves. It is also essential that wave amplitudes remain small, so that the 

finite amplitude waves retain the structure e f~ the  linear eigenmodes which we assume to 

be Toroidicity-induced Alfvkn Eigenmodes. The appropriate dynamical variables for these 
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waves are their amplitudes and phases, which change as the waves interact with resonant 

particles. In Sec. 111, we present our numerical results on the simulation of the dynamics of 

single mode saturation, resonance overlap between two neighboring modes, and the collective 

bursts with particle losses, respectively. Section IV contains a brief summary. 

11. LAGRANGIAN FORMALISM FOR WAVSPARTICLE IN- 
TERACTION 

In this section we present the derivation of the simplified Lagrangian for energetic parti- 

cles interacting with shear Alfvkn waves in a cold plasma (zero beta limit). 

Our starting point will be the exact Lagrangian for charged particles in aa electromagnetic 

field 

L =  [ T + - ( A . v ) - e c $ ]  mu2 e + - / ( E 2 - B 2 ) d V  1 
plasma C 87~ 

paniclea 

+ c  
energetic 
particlea 

1 mu2 e - + - (A v) - e+ 2 c  

Since plasma particles have an adiabatic response to the fields, their contribution to the 

Lagrangian can be rewritten in terms of the field variables. With this simplification, the first 

two terms in Eq. (1) give a Lagrangian for the waves L,: 

L,= 1 [ ~ + - ( A . v ) - e m ]  mu2 e + - / ( E 2 - B 2 ) d V  1 
plum. C 87r 

where subscripts “0” refers to the unperturbed quantities, and we have subtracted out a 

constant in the Lagrangian so that L, = 0 when perturbations vanish. 

It should be noted that, to lowest order, the wave Lagrangian L, is quadratic with respect 

to the wave amplitudes since the linear terms vanish due to the fact that the equilibrium 
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state satisfies a minimum action principle. 

Further manipulation is somewhat detailed and is left for a later paper to exhibit. One 

finds that to quadratic order in the fields, in a zero beta system, and in a gauge where the 

perturbed potential is zero, L, can be reduced to: 

where Al is the perturbed vector potential, UA is the Alfv6n velocity, 41 is the unperturbed 

parallel plasma current. The dynamical variable in this Lagrangian is 

which we choose to represent by two independent scalar functions 0  an^, \k as follows: 

One can show that if parallel gradients (along the magnetic field) are much less than 

the perpendicular gradients, a 6 excitation which gives rise to magnetic compression is 

nearly decoupled from a @ excitation that gives rise to magnetic shear. Hence, for the shear 

Alfvkn-like excitation, we need only Q. This then yields the following term for the reduced 

Lagrangian. 
2 

1 - (curl Bo)' [- (Bo 
BO 

( 5 )  

By minimizing the action 

S, = J L,dt 
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with respect to ip ,  we obtain the following linear eigenmode equation, which determines a 

set of eigenfrequencies -w and eigenfunctions ip, (r): 

1 - l(AB0 2 - V) [ 802 (Bo - VQU)] = 0. 

In a tokamak, an eigenfunction can be written as 

where n is a toroidal mode number, c p  is the geometrical toroidal angle, 6 is the poloidal 

angular coordinate, and ?,h is a label of the flux surfaces. 

We then represent CP as a superposition of linear modes 

@ = A(t)@,(r) exp(-icr(t) - iwt)  + C.C. 
eigenmodes 

where mode amplitudes A(t )  and phases ~ ( t )  are slowly varying functions of time. This 

representation reduces Lw to 

In this expression, rapidly oscillating terms have been neglected. The eigenfunction QW can 

always be normalized by the condition 

so that L, takes- the form 

L,= &A2. 
eigenmodea 
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In terms of A and a,  the equations of 

It should be noted that Eqs. (9) and 

motion for free waves become 

A = O  

lu = 0. 

(1 1) exhibit a universal structure of the Lagrangian 

for the waves with slowly varying amplitude and phase, which is valid for weakly nonlinear 

systems. Note that the Lagrangian is proportional to &A2. Specific features of the mode 

enter the Lagrangian only as a form factor. 

We now consider the Lagrangian for energetic particle guiding center motion. One can 

show, starting from Littlejohn's Lagrangian," that zeroth order Lagrangian that gives the 

equilibrium orbits, can be written in the formyl7 

(13) 
me 
e 

where the canonical momenta, Pe and P9 are taken as dynamical variables. They are defined 

L~~ = ped + p9+ + - & - H(P,; Po; e; p )  

as: 

B4 
BO 

eAv + mull - P9 = - 
C 

where the cp and 8 subscripts refer to covariant vector components of a vector, e.g. for a 

vector F we have 

The Hamiltonian H is defined as 

The unperturbed motion conserves p, 5, and the energy H. With these three 

(16) 

onser- 

vation laws the motion is fully integrable, which dows a caaonical transformation from the 
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variables (Po; P , ;  p;  8; c p ;  <) to the action-angle variables (Po; Fq; ,G; 8; cp'; 9. The generating 

function Go [& &,; p; 8; cp;  61 of this transformation has the form 

mc 6 - 1  

Go = r p F q + < e p + J o  doPo [ H ; P q ; p ; B ]  (17) 

where Po is the poloidal momentum at the particle orbit as a function of the old poloidal 

angle 6, the new momentum pvl and the energy H(P,;pe). The function Po is implicitly 

given by the equation 

- -  

H ( P , ;  Po; 6;  ji) = Z. 

In terms of the function Go, the transformation is determined by the following equations 

dG0 ; PO=- 
mc aj2 86 e 

&-- e dGo 

Once this transformation is performed, the Hamiltonian becomes independent of e' and cp', 

i.e. Eq. (13) takes the form 

It follows from Eq. (19) that, in the unperturbed motion &, Pv, and ji are constant and also 

that 8, $, and < are linear functions of time: 

The quantities 9, ww,-, and 

and gyro-motion, respectively. 

are the unperturbed frequencies of the poloidal-, toroidal-, 

To first order, the perturbed particle Lagrangian is dominantly given by 
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with AI the perturbed vector potential and X the particle guiding-center coordinate. Using 

AI = v@ - Bo(Bo. V@)/B,2, we find that to within a total derivative (which does not alter 

the Euler equations derived from the Lagrangian) the perturbed Lagrangian is given by 

where 2111 = [ 2 ( H  - pBo/2m]''*. Then using Eqs. (118) and (119) we obtain 

In this expression small higher order ten& proportional to A and d! have been neglected. 

Next, we change particle coordinates from $, 8, cp, and "11 to the action-angle variables. 

Taking into account that Lint is a periodic function of $ and e, we rewrite Eq. (21) as a 

Fourier series in e, i.e. 

- - 
Lint = Ae"a""t ern9 ' - C K,n(Flp; &)ege + C.C. 

eigenmodea C 

with the matrix element &;n given by the equation 

Finally, we combine Eqs. (ll), (19), and (22) into the total Lagrangian for particles and 

waves: 

9 



111. SIMULATION TECHNIQUE AND NUMERICAL RESULTS 

Our numerical algorithm is based on the map equations for particles and waves, which 

can be derived from the Lagrangian (24) by integrating the Euler equations over a finite time 

step that is small compared to the instability growth time but large compared to the typical 

wave period. This algorithm is a straightforward generalization of the algorithm developed 

in Ref. 12 for the one-dimensional bumpon-tail proble. In order to calculate the matrix 

element (23) we use an analytic approximation for the mode structure, which combines the 

asymptotic results of Refs. 18 and 19 and which is quantitatively valid in the low shear limit. 

where r , c ; 8  are the straight field line coordinates, &(s) is the zeroth-order Macdonald 

function, C= 4 %, and ro is the gap location defined by the condition 

We add to the wave evolution equation a damping rate due to the background plasma. The 

weights of the particles, w, are determined by the equation 

where S(Fv,po) is a source for the particles (we take p = 0 in this simulation, a model for 

parallel beam injection in a tokamak), and va  is the annihilation rate. The validity of this 

procedure depends on the fact that the test particles move in an incompressible phase space. 

A formal demonstration of this statement is given in Ref. 12. The source is prepared to be 

spread about resonance curves in the Po, Pv space. We denote the locus of points (Po,,, Pvo) 
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to be the curve that satisfies 

This curve is indicated schematically in Fig. 1, by the broad solid line. Particles need to be 

loaded so that they encompass the region associated with the physical mode width plus the 

wings associated with finite orbit width. In addition there is the width due to the response 

of the particle to the wave. Near a single resonance curve, the resonance condition will 

be broadened by the trapping frequency Wb cc of the particle in the wave, such that 

Wb x cryL, where y~ is the growth rate, Q is a dimensionless number or order unity, and A 

the mode amplitude. This width, indicated in Fig. 1, has to be less than the particle loading 

width. The shaded area, in Fig. 1, indicates the window for particle loading. When more 

than one resonance is present, this loading needs to be implemented about each resonance. 

If global diffusion is to be described, the window around each resonance has to overlap the 

neighboring resonances. 

The first type of simulation that is to be studied is the saturation of a single mode without 

sources and sinks. The linear growth rate is given by 

where &,n is the matrix element defined in Eq. (23) and F is the unperturbed distribution 

function of the energetic particles. 

In Fig. 2 we show the saturation level Q = Ldb/'yL that arises when an unstable equilibrium 

distribution is initially loaded, and when there are no source, sink, or background damping. 

At sufficiently small ' y ~ / w  we see that Q = 3.6. There is a slight increase of CY as ' y ~ / u  

increases. This is probably due to a nonlinear effect that arises when a particle's displacement 

due to a finite wave becomes comparable to the orbit width. 

In Fig. 3 we show the time evolution of a single mode when there is no mode overlap. 

11 



The parameters defining the mode are given in the figure caption. We see that the mode 

periodically bursts in time with an average wave energy release of less than 200 units. 

In Fig. 4 we show the flattening of the distribution function as  a function of radius. For 

this curve we have integrated the contribution over different particle velocities at the same 

radius. When two modes are loaded so that mode overlap can arise, we see in Fig. 5 that the 

wave energy release of a single mode with overlap is four times larger than in the no-overlap 

case (the second mode’s characteristics are similar to the illustrated response), with longer 

intervals between bursts. The longer time is needed to reconstitute a distribution function 

that will produce a drive large enough to again cause overlap. 

One can have many modes, without overlap, as seen in Fig. 6. We observe “benign” 

pulsations, without loss to a “particle collector plate” placed near the boundary of the system. 

However, when the growth rate is increased by 25%, it is enough to cause resonance overlap. 

We see in Fig. 7 that the overlapped modes cause a spatial flattening of the distribution 

function over all three modes. The wave energy release is enhanced by a factor of 50 comprved 

to the non-overlapped case as seen in Fig. 8. The quivering of the orbits in these large 

amplitude waves brings the particles to the collector plates where they are absorbed. 

IV. CONCLUSIONS 

In this work we have indicated how a mapping method can be developed to describe 

TAE modes in a toroidal plasma. The mapping method has reduced the particle and wave 

equations to a universal form. By understanding the structure of resonance and transport 

between resonances a global picture of the nonlinear evolution can be inferred. This descrip 

tion applies equally well to the bumpon-tail instability described in earlier work, and to the 

simulation of TAE modes in a tokamak that have been described here. 

Of course before one makes more quantitative comparisons with experiment, additional 
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. .  
work is needed to describe the wave mode structure and the resonance conditions in a realistic 

tokamak. Nonetheless, this work suggests that the particle loss observed in experiment4p5 

can be explained as due to the simultaneous onset of stochasticity with the amplification of 

wave energy. Both experiments show a rich spectral content of excited waves when particle 

losses are observed. 
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FIGURE CAPTIONS 

FIG. 1. Particle loading near the resonance. 

FIG. 2. Resonant particle bounce frequency at mode saturation (initial value problem with- 

out a source and sink, and without background damping). 

FIG. 3. Pulsating nonlinear regime for an isolated mode. The normalized background damp- 

ing and the particle relaxation rate for this run are, respectively, yd/y~ = 0.15 and 
va - = 0.03. 
YL 

FIG. 4. Snapshot of the radial distribution function of resonant particles at the peak of the 

strongest burst shown in Fig. 3. 

FIG. 5. Enhancement of the mode energy in the nonlinear pulsations of two overlapped 

modes with rspect to the single mode pulsations shown in Fig. 3. 

FIG. 6. Benign pulsations of three modes without mode overlap: a) time evolution of the 

first mode energy; b) snapshot of the radial distribution of resonant particles. The 

normalized background damping and the particle relaxation rate for this run are, 

respectively, yd/y~ = 0.26 and v,/^y~ = 0.039. 

FIG. 7. Particle loss simulation. Snapshots of the particle distribution function with yd/y~ = 

0.22 and va/?L = 0.034. 

FIG. 8. Time evolution of the wave energy in the particle loss simulations shown in Fig. 7. 

Note the enhancement of the mode energy and synchronization of bursts caused by 

mode overlap. 
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