Ordering in classical Coulombic systems.

PDF Version Also Available for Download.

Description

The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity {Lambda} (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than {approximately}175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures ... continued below

Physical Description

10 p.

Creation Information

Schiffer, J. P. January 22, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The author discusses the properties of classical Coulombic matter at low temperatures. It has been well known for some time [1,2] that infinite Coulombic matter will crystallize in body-centered cubic form when the quantity {Lambda} (the dimensionless ratio of the average two-particle Coulomb energy to the kinetic energy per particle) is larger than {approximately}175. But the systems of such particles that have been produced in the laboratory in ion traps, or ion beams, are finite with surfaces defined by the boundary conditions that have to be satisfied. This results in ion clouds with sharply defined curved surfaces, and interior structures that show up as a set of concentric layers that are parallel to the outer surface. The ordering does not appear to be cubic, but the charges on each shell exhibit a ''hexatic'' pattern of equilateral triangles that is the characteristic of liquid crystals. The curvature of the surfaces prevents the structures on successive shells from interlocking in any simple fashion. This class of structures was first found in simulations [3] and later in experiments [4].

Physical Description

10 p.

Notes

INIS; OSTI as DE00010583

Medium: P; Size: 10 pages

Source

  • Conference on Strongly Coupled Coulomb Systems, Chestnut Hill, MA (US), 08/03/1997--08/10/1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/PHY/CP-95452
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10583
  • Archival Resource Key: ark:/67531/metadc621414

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 22, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 6:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Schiffer, J. P. Ordering in classical Coulombic systems., article, January 22, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc621414/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.