REPORT No. 776

THE THEORY OF PROPELLERS. II—METHOD FOR CALCULATING THE AXIAL INTERFERENCE VELOCITY

By THEODORE THEODORSEN

 φ_1

SUMMARY

A technical method is given for calculating the axial interference velocity of a propeller. The method involves the use of certain weight functions P, Q, and F. Numerical values for the weight functions are given for two-blade, three-blade, and six-blade propellers.

INTRODUCTION

It has formerly been the practice to use the Glauert-Lock simplified assumption that the interference velocity is proportional to the loading at the point considered. This assumption is obviously inadequate since the interference flow depends on the slope and curvature of the loading function as well as on the local magnitude. A method is developed herein for calculating the axial interference flow for any loading. The method is accurate to the first order and therefore gives the interference flow in ratio to the loading for small loadings. It can be shown that this accuracy is adequate for all technical applications.

The present paper is the second in a series on the theory of propellers. Part I deals with a method for obtaining the circulation function for dual-rotating propellers. (See reference 1.)

SYMBOLS

 v_1 axial interference velocity at x_1 $[v_x(x_1)]$

- w rearward displacement velocity of helical vortex surface (at infinity)
- V advance velocity of propeller
- p number of blades
- *n* order number of blade $(0 \le n \le p-1)$
- ω angular velocity of propeller
- Γ circulation at radius x

K circulation coefficient to first order $\left(\frac{p\Gamma\omega}{2\pi Vw}\right)$

- x nondimensional radius in terms of tip radius
- z₁ reference point at which interference velocity is calculated
- θ angular distance of vortex element from propeller λ advance ratio $(V/\omega R)$
- R tip radius of propeller

Г

- $P_1(x)$ function defined in equation (1)
- $Q_1(x)$ function defined in equation (3)
- P used for $P_1(x)$ in tables and figures; refers to other blades $(n \neq 0)$
- Q used for $Q_1(x)$ in tables and figures; refers to blade itself (n=0)

phase angle of *n*th blade
$$\left(\frac{2n\pi}{p}\right)$$

helix angle at $x_1\left(\tan^{-1}\frac{\lambda}{x_1}\right)$

WEIGHT FUNCTION $P_1(x)$

It can be shown that the axial interference flow is given by the expression

$$\frac{v_1}{\frac{1}{2}w} = \frac{1}{p} \sum_{n} \int \frac{dK}{dx} x \frac{dP_1(x)}{dx} dx$$

where the summation is over the number of blades 0 to p-1. The important function $P_1(x)$ is defined as

$$P_{1}(x) = \int_{0}^{\infty} \frac{d\frac{\theta}{2\pi}}{\sqrt{\frac{1}{4\pi^{2}\lambda^{2}} \left[x^{2} + x_{1}^{2} - 2xx_{1}\cos\left(\theta + \frac{2n\pi}{p}\right)\right] + \left(\frac{\theta}{2\pi}\right)^{2}}}$$

where $n=0, 1, 2, \ldots, p-1$, the number of the particular blade. The problem is thus essentially solved by giving the function $P_1(x)$ for each point along the radius.

It is convenient to make $P_1(x)$ finite by subtracting a quantity that is independent of x. The function $P_1(x)$ may therefore be redefined as

$$P_{1}(x) = \int_{0}^{\infty} \left\{ \frac{1}{\sqrt{\frac{1}{4\pi^{2}\lambda^{2}} \left[x^{2} + x_{1}^{2} - 2xx_{1}\cos\left(\theta + \frac{2n\pi}{p}\right)\right] + \left(\frac{\theta}{2\pi}\right)^{2}}} - \frac{1}{\sqrt{1 + \left(\frac{\theta}{2\pi}\right)^{2}}} \right] d\frac{\theta}{2\pi}$$
(1)

It is noticed that, in the integral $P_1(x)$, the integrand changes from $+\infty$ to $-\infty$ at $x=x_1$ for $\theta=0$. This difficulty, which occurs only for n=0 (that is, for the blade itself), is overcome in the following manner: The expression

$$\int_{0}^{\infty} \left[\frac{1}{\sqrt{\frac{1}{4\pi^{2}\lambda^{2}}(x-x_{1})^{2} + \left(\frac{xx_{1}}{\lambda^{2}}+1\right)\left(\frac{\theta}{2\pi}\right)^{2}}} - \frac{1}{\sqrt{\frac{1}{4\pi^{2}\lambda^{2}} + \left(\frac{xx_{1}}{\lambda^{2}}+1\right)\left(\frac{\theta}{2\pi}\right)^{2}}} \right] d\frac{\theta}{2\pi}$$
(2)

which is integrable and equal to

$$-\sqrt{\frac{\lambda^2}{\lambda^2+xx_1}}\log|x-x_1|$$

may be subtracted from $P_1(x)$ to yield a finite and smooth

integrand. Thus, by subtraction, a quantity

$$Q_{1}(x) = \int_{0}^{\infty} \left[\frac{1}{\sqrt{\frac{1}{4\pi^{2}\lambda^{2}}(x^{2} + x_{1}^{2} - 2xx_{1}\cos\theta) + \left(\frac{\theta}{2\pi}\right)^{2}}} - \frac{1}{\sqrt{\frac{1}{\sqrt{1 + \left(\frac{\theta}{2\pi}\right)^{2}}}} - \frac{1}{\sqrt{\frac{1}{4\pi^{2}\lambda^{2}}(x - x_{1})^{2} + \left(\frac{xx_{1}}{\lambda^{2}} + 1\right)\left(\frac{\theta}{2\pi}\right)^{2}}} + \frac{1}{\sqrt{\frac{1}{4\pi^{2}\lambda^{2}} + \left(\frac{xx_{1}}{\lambda^{2}} + 1\right)\left(\frac{\theta}{2\pi}\right)^{2}}} \right] d\frac{\theta}{2\pi}$$
(3)

is obtained. Finally, for the blade itself (n=0),

 $P_1(x) = Q_1(x) + F$

where

$$F = -\sqrt{\frac{\lambda^2}{\lambda^2 + xx_1}} \log |x - x_1|$$

The integral $Q_1(x)$ is convenient for graphical integration and is, in fact, small in comparison with the function F.

No discontinuities arise in the P functions for the other blades $(n \neq 0)$. The P functions are therefore used directly in the calculation for the other blades. It should be noted that the functions P, Q, and F are all symmetrical in x and x_1 . The use of the subscript, which has been used to indicate reference to the point x_1 , is therefore discontinued. In the following discussion, the functions Q and F refer to the blade itself and P refers to the other blades.

Since the weight function is needed in the form $x \frac{dP}{dx}$, it is written as

$$x\frac{dP}{dx} = x\frac{dQ}{dx} + x\frac{dF}{dx}$$

It is to be noted that by far the largest contribution comes from the logarithmic function F since it really represents the entire field in the neighborhood of the point considered. In developed form,

$$x\frac{dF}{dx} = -\frac{1}{\sqrt{1+\frac{xx_{1}}{\lambda^{2}}}} \frac{x}{x-x_{1}} + \frac{1}{2} \frac{\frac{xx_{1}}{\lambda^{2}}}{\sqrt{\left(1+\frac{xx_{1}}{\lambda^{2}}\right)^{3}}} \log |x-x_{1}| \quad (4)$$

NUMERICAL EVALUATION OF WEIGHT FUNCTIONS Q, F, AND P

The weight functions Q, F, and P are shown in a series of tables and figures. The first step of integrating against the angle θ is omitted for simplicity. The functions $\frac{dQ}{dx}$ and $\frac{dP}{dx}$ have been obtained by graphical differentiation of the Qand P functions with actual calculation at the end points x=0 and 1 for accuracy. It should be noted that these functions and their derivatives are continuous and smooth. The results are given in the following order:

(1) Table I and figure 1:
$$Q$$
 against x ($0 \le x \le 1.00$; $0.1564 \le x_1 \le 1.00$; $\lambda = \frac{1}{2}$, 1, and 2), obtained from equation (3)
(2) Table II and former 2: $\frac{dQ}{dx}$ are instant $x_1 < 0 \le x \le 1.00$.

Table II and figure 2: $\frac{dx}{dx}$ against x ($0 \le x \le 1.00$; $0.1564 \le x_1 \le 1.00; \lambda = \frac{1}{2}$, 1, and 2), where $\frac{dQ}{dx}$ is ob-

tained by graphical differentiation of Q except for x=0 and 1, for which $\frac{dQ}{dx}$ is obtained analytically (3) Table III and figure 3: $-x\frac{dQ}{dx}$ against x ($0 \le x \le 1.00$; $0.1564 \le x_1 \le 1.00; \ \lambda = \frac{1}{2}$, 1, and 2), obtained by multiplying values in table II by -x(4) Table IV: $x \frac{dF}{dx}$ against x ($0 \le x \le 1.00$; $0 \le x_1 \le 1.00$; $\lambda = \frac{1}{2}$, 1, and 2), obtained from equation (4) (5a) Table V: P against x for $\tau = 60^{\circ}$ ($0 \le x \le 1.00$; $0.1564 \le$ $x_1 \leq 1.00; \lambda = \frac{1}{2}$, 1, and 2), obtained from equation (1) (5b) Figure 4: P(x) - P(1) against x for $\tau = 60^{\circ}$ ($0 \le x \le 1.00$; $0.1564 \le x_1 \le 1.00; \lambda = \frac{1}{2}, 1, \text{ and } 2$ (6a) Table VI: same as table V for $\tau = 120^{\circ}$ (6b) Figure 5: same as figure 4 for $\tau = 120^{\circ}$ (7a) Table VII: same as table V for $\tau = 180^{\circ}$ (7b) Figure 6: same as figure 4 for $\tau = 180^{\circ}$ (8a) Table VIII: same as table V for $\tau = 240^{\circ}$

- (8b) Figure 7: same as figure 4 for $\tau = 240^{\circ}$
- (9a) Table IX: same as table V for $\tau = 300^{\circ}$
- (9b) Figure 8: same as figure 4 for $\tau = 300^{\circ}$ (10) Table X: $\frac{dP}{dx}$ against τ for $\lambda = \frac{1}{2}$ ($\tau = 60^{\circ}$, 120°, 180°, 240°, and 300°; x=0 and 1.00; $0.1564 \le x_1 \le 1.00$), obtained analytically
- (11) Table XI: same as table X for $\lambda = 1$
- (12) Table XII: same as table X for $\lambda = 2$
- (13) Table XIII and figure 9: $-x \frac{dP}{dx}$ against x for $\lambda = \frac{1}{2}$ $(\tau = 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, \text{ and } 300^{\circ}; 0.1564 \le x \le 1.00;$ $0.1564 \le x_1 \le 1.00$), obtained by multiplying values in table X by -x
- (14) Table XIV and figure 10: same as table XIII and figure 9 for $\lambda = 1$
- (15) Table XV and figure 11: same as table XIII and figure 9 for $\lambda = 2$
- (16) Table XVI and figure 12: $\sum -x \frac{dP}{dx}$ against x for threeblade and six-blade propellers ($\tau = 120^{\circ}$ and 240° for three-blade propeller; $\tau = 60^{\circ}$, 120°, 180°, 240°, and 300° for six-blade propeller; $0.1564 \le x \le 1.00$; $0 \leq x_1 \leq 1.00$; $\lambda = \frac{1}{2}$, 1, and 2); it may be noted that these values for two-blade propellers are given by $-x\frac{dP}{dx}$ for $\tau=180^{\circ}$ in tables XIII to XV and in figures 9 to 11

APPLICATION OF METHOD

Steps to obtain the induced velocity expressed as $\frac{v_1}{\frac{1}{2}w}$ as follows:

(1) Plot the quantity $x \frac{dQ}{dx}$ against the circulation coefficient K and perform graphically the integration

$$\int x \frac{dQ}{dx} dK$$

(2a) Plot similarly the functions $x \frac{dF}{dx}$ against K and perform the integration

$$\int x \frac{dF}{dx} dE$$

Since $x \frac{dF}{dx}$ becomes infinite at $x=x_1$, it is necessary to exclude a gap from $x_1 - \frac{1}{2}\Delta x$ to $x_1 + \frac{1}{2}\Delta x$ and to consider this gap separately by use of a Taylor expansion.

(2b) The contribution from the gap Δx becomes

where

$$\Delta x = 2|x - x_1|$$

$$b = \frac{\cdot \lambda}{\sqrt{\lambda^2 + x_1^2}} = \sin \phi_1$$

$$c = \frac{x_1^2}{\lambda^2 + x_1^2} = \cos^2 \phi_1$$

 $\Delta = -b \left[x_1 K'' + \left(1 - \frac{1}{2}c \log \frac{\Delta x}{2} \right) K' \right] \Delta x$

and K' and K'' are the derivatives of K with respect to x. (3) Finally, there is a contribution from the other blades. This contribution is obtained by plotting $x\frac{dP}{dx}$ against K for the other blades. Since the value $\sum -x\frac{dP}{dx}$ can be taken directly from the tables, this work contains only one step with a single graphical integration

$$\int \sum x \frac{dP}{dx} \ dE$$

By addition of the results of steps (1) to (3), the total interference velocity v_1 in the axial direction is obtained. The relationship between the axial interference velocity v_1 at the radius x_1 to the axial displacement velocity w of the vortex sheet may be seen from the sketch in figure 13. The relation is

$$v_1 = \frac{1}{2}w \cos^2 \phi_1$$

cr, conversely, the displacement velocity w of the vortex sheet may be obtained from the calculated axial interference velocity v_1 by the relation

$$\frac{1}{2}w = \frac{v_1}{\cos^2\phi_1}$$

which gives the axial displacement velocity at the propeller disk. For the case of the ideal loading this axial displacement velocity must come out as a constant, thus permitting a check on the weight functions. Cases of nonideal loading are evidently of more practical concern. It is the purpose of this paper to give a method for calculation of the axial interference and displacement velocity for any (light) loading.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, LANGLEY FIELD, VA., September 19, 1944.

REFERENCE

1. Theodorsen, Theodore: The Theory of Propellers. I—Determination of the Circulation Function and the Mass Coefficient for Dual-Rotating Propellers. NACA Rep. No. 775 1944.

FIGURE 1.-Function Q against r.

FIGURE 2.—Function dQ/dx against τ .

للسابينين بالابتم مرم الرافي

.10

.05

0

.2

(a)

1.0

.6

.8

x

.4

.2

.05

0

.1564

(Ъ)

• 2------

REPORT NO. 776-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

(b) $\lambda = 1$. (c) $\lambda = 2$. FIGURE 4.—Continued.

.

FIGURE 5.-Concluded.

FIGURE 5.—Continued.

- - --

•

843110-50-5

بالمراج الماديان للمحمد ستشمص الأمرة الأبار ساكر متراسيسم

N 1 - 144

منفضين الثلا

1. 41.2

٠.

لا الفيادة المتقطرة التماسطين

0

(Ъ)

я.

0

.2

.4

 $\sum_{k}^{n} \frac{dP}{dx} x = \frac{1}{2}$

١

 $x_1 = 0.1564$

3090

.5878

.8090

.95¦/

1.0000

(d)

1.0

.8

x

(d) Six-blade propeller; $\lambda = \frac{1}{2}$. FIGURE 12.—Continued.

FIGURE 13.—Velocity diagram.

ø

- - - - -

.

...

		TABLE I	FUNC	TION Q	AGAINS	T x	
564	0,3090	0.4540	0.5878	0 7071	0.8000	0.8010	0.0511

						-					
x ₁	0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8000	0.8910	0.9511	0.9877	1.00
					2	-12					
0.1564 .3090 .4540 .5878 .7071 .8090 .8910 .9511 .0877 1.00	0.11826 .11826 .11826 .11826 .11826 .11826 .11826 .11826 .11826 .11826 .11826 .11826	$\begin{array}{c} 0.12420\\ .11817\\ .10898\\ .09334\\ .07351\\ .06051\\ .04820\\ .03937\\ .03429\\ .03252\\ \end{array}$	0.11817 .10580 .08696 .06259 .03851 .01679 00264 01646 03407 02729	0, 10898 . 08996 . 06101 . 02926 . 00072 02257 04633 06370 07755 07720	$\begin{array}{c} 0.09334\\ .06259\\ .02926\\00169\\03644\\06191\\08528\\10315\\11315\\11755\\ \end{array}$	0.07351 .03851 00072 03644 07081 09533 12238 14059 15029 15430	$\begin{array}{c} 0.06051\\ .01679\\02257\\06191\\09533\\12420\\14934\\16703\\17761\\18246 \end{array}$	0.04820 00264 04633 08628 12238 14934 16900 18837 20003 20196	0.03637 01646 06370 10315 14059 16703 18837 20752 21634 22098	0. 03429 02407 07355 11315 15029 17761 20063 21634 22633 23233	0.03252 02729 07720 11755 15430 18346 20496 22098 23283 23724
				1	3	λ=1					
0, 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1, 00	0. 06390 . 06390 . 06390 . 06390 . 06390 . 06390 . 06390 . 06390 . 06390 . 06390	0. 05804 . 04915 . 04323 . 03635 . 02954 . 02318 . 01727 . 01236 . 01021 . 01111	$\begin{array}{c} 0.\ 04915\\ .\ 03428\\ .\ 02244\\ .\ 01054\\\ 00262\\\ 01301\\\ 02386\\\ 03352\\\ 03425\\ \end{array}$	0. 04323 . 02244 . 00444 01419 03213 04733 05956 06941 07376 07401	0. 03635 . 01054 01419 03715 05761 07560 09053 10235 10847 10903	0.02954 00262 03213 05761 08155 10030 11704 13087 13861 13974	0.02318 01301 04733 07560 10030 12049 13758 15259 16012 16140	0. 01727 02336 05956 09063 11704 13758 15528 18920 17850 18028	0.01236 03059 06941 10235 13087 15259 16920 18140 19344 19590	0.01021 03352 07376 10847 13861 16012 17850 19344 20407 20496	0.01111 03425 07401 10903 13974 16143 18028 19590 20496 20486
			<u>.</u>		;	\ =2					
0.1564 .3090 .4540 .5878 .7071 .8090 .8910 .9511 .9877 1.00	0. 02794 . 02794	0.02524 .02008 .01748 .01426 .01102 .00792 .00521 .00501 .00305 .00310	0.02008 .01370 .00697 00084 00224 0128 01605 01970 02072 02064	0. 01748 . 00697 00182 01432 02246 02941 03612 04060 04210 04251	0. 01426 00084 01432 02785 03786 04536 05329 05897 06081 06145	0. 01102 00624 02246 03786 05984 05964 06815 07407 07713 07820	0.00792 01128 02941 04536 05964 07314 08246 08781 08781 09040 09199	0.00521 01605 03512 05329 06815 08246 09277 10019 10284 10437	0.00301 01970 04060 05897 07407 08781 10019 10970 11211 11318	0.00305 02072 04210 06081 07713 09040 10284 11211 11582 11708	0.00310 02064 04251 06145 07820 09199 10437 11318 11708 11779

TABLE II.—FUNCTION $\frac{dQ}{dx}$ AGAINST x

<i>x</i> 1 <i>x</i>	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
						$\lambda = \frac{1}{2}$					
0.1564 .3090 .4540 .5878 .7071 .8090 .8910 .9511 .9877 1.00	0.05000 .00250 06293 16149 28838 42088 53863 63559 69631 71759	0.0175 0320 0975 1825 2648 3255 4000 4620 5100 5240	$\begin{array}{r} -0.0150 \\0672 \\1300 \\2500 \\2550 \\2880 \\3352 \\3744 \\4040 \\4144 \end{array}$	0. 0470 1025 1848 2150 2548 2740 3140 3375 3525 3590	0.0800 1396 2300 2576 2700 3024 3160 3264 3320	-0. 1100 1748 2168 2425 2655 2750 3050 3150 3190	-0. 1340 1984 2340 2555 2752 2840 2952 3020 3150	-0. 1470 2120 2448 2655 2840 2915 2978 3060 3135 3160	$\begin{array}{r} -0.\ 1520 \\\ 2184 \\\ 2544 \\\ 2544 \\\ 2720 \\\ 2820 \\\ 3020 \\\ 3020 \\\ 3165 \\\ 3220 \end{array}$	-0. 1568 2220 2578 2750 2875 2950 3068 3160 3248 3290	$\begin{array}{r} -0.15974 \\22254 \\2554 \\26922 \\27042 \\28349 \\31310 \\33400 \\3360 \end{array}$
						λ=1					
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	-0.04690 08960 14818 19684 25298 30136 34255 37091 39041 39689	-0.0475 0900 1390 2265 2620 2855 3187 3298 3298 3322	-0.0480 0902 1360 1720 2120 2396 2712 3010 3025	0. 0500 0920 1350 1680 2030 2270 2560 2748 2822 2837	-0.0520 0930 1370 1980 2196 2450 2620 2680 2700	-0.0530 0055 1375 1675 1960 2140 2380 2508 2575 2600	0.0550 0980 1400 1685 1950 2108 2280 2416 2480 2605	0. 0575 1014 1426 1712 1940 2090 2225 2350 2420 2438	$\begin{array}{c} -0.\ 0600\\\ 1050\\\ 1465\\\ 1740\\\ 1936\\\ 2080\\\ 2200\\\ 2338\\\ 2390\\\ 2410 \end{array}$	-0.0630 1090 1500 1770 1936 2100 2225 2370 2420 2435	0.06727 11586 15343 17918 19592 21471 22300 24250 24700 24850
						λ=2					
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	-0.02960 04857 07063 09199 11285 13155 14748 16854 16854 16757	-0.0295 0492 0712 0929 1114 1291 1450 1560 1600 1616	-0,0294 0499 0720 1937 1100 1269 1420 1534 1561 1571	-0.0291 0500 0725 0940 1243 1387 1508 1538	-0.0290 0500 0730 1084 1220 1356 1480 1601 1610	-0.0238 0500 0730 0939 1080 1200 1327 1454 1478 1486	-0.0284 0500 0730 1078 1188 1188 1300 1430 1456 1460	0.0280 0498 0730 0931 1078 1178 1281 1410 1434 1440	0.0276 0491 0725 0930 1078 1170 1270 1396 1420 1428	$\begin{array}{c} -0.0270 \\0482 \\0715 \\0929 \\1078 \\1167 \\1266 \\1390 \\1416 \\1420 \end{array}$	$\begin{array}{c} -0.02841 \\04712 \\07058 \\09270 \\10800 \\11700 \\12705 \\14034 \\14240 \\14320 \end{array}$

TABLE II.—FUNCTION $\frac{dQ}{dx}$ AGAINST x—Concluded

x 1	0	0.1564	0.3090	0.4540	0.5878	0.7071	0.8090	0.8910	0.9511	0.9877	1.00		
					λ=	$=\frac{1}{2}$							
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 9510 . 9511 . 98777 1. 00	0.05000 .00250 06293 16149 28538 42088 63863 63659 69631 71759	-0.0010 0520 1165 2580 3010 3575 4040 4535	0.0501 1060 1665 2170 2540 2735 3120 3350 3495 3560	-0.0970 1598 2055 2370 2730 2730 2990 3085 3190 3240	0. 1315 1960 2330 2545 2750 2830 3020 3150	-0. 1475 2130 2470 2840 2925 2980 3060 3175	-0. 1540 2200 2551 2740 2880 2965 3025 3105 3185 3230	-0. 1565 2220 2580 2750 2900 2955 3060 3155 3240 3280	-0. 1595 2240 2575 2735 2845 2915 3110 3280 3325	-0.1600 2235 2565 2700 2780 8115 3235 3301 3350	-0,15074 -: 22254 25584 25922 27642 31319 33100 33100 33600		
[$\lambda = 1$												
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	-0.04690 08960 14818 26298 30136 31255 37091 39041 39689	-0.0477 0900 1368 2170 2475 2805 3020 3123 3135	-0.0505 0923 1351 2027 2265 2550 2732 2810 2822	-0.0526 0947 1373 1670 2168 2395 2560 2625 2645	-0.0550 0978 1398 1683 2110 2110 2285 2423 2495 2518	0. 0575 1020 1430 1718 1940 2088 2225 2345 2418 2436	$\begin{array}{r} -0.\ 0600\\\ 1051\\\ 1468\\\ 1742\\\ 1936\\\ 2080\\\ 2200\\\ 2336\\\ 2390\\\ 2410 \end{array}$	$\begin{array}{c} -0.\ 0625\\\ 1085\\\ 1498\\\ 1765\\\ 1936\\\ 2098\\\ 2223\\\ 2365\\\ 2412\\\ 2428\end{array}$	$\begin{array}{r} -0.0650 \\1123 \\1522 \\1776 \\2120 \\2250 \\2400 \\2465 \\2485 \end{array}$	-0.0669 1149 1530 1790 1952 2132 2275 2420 2480	-0.06727 11580 15343 17918 19592 21471 22800 24250 24250 24850		
					>	-2							
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8090 . 8090 . 9511 . 9577 1. 00	-0.02960 04857 07063 09199 11265 13155 14748 18574 18554 16757	$\begin{array}{r} -0.0295 \\0497 \\0718 \\0933 \\1108 \\1279 \\1432 \\1546 \\1578 \\1589 \end{array}$	-0.0291 0500 0728 0940 1241 1384 1505 1528 1534	-0.0290 0500 0730 0940 1081 1210 1340 1467 1490 1497	-0. 0285 0500 0730 0837 1189 1804 1432 1459 1463	-0.0280 0498 0730 0831 1078 1177 1280 1409 1439	-0. 0273 0490 0723 0930 1078 1169 1269 1396 1420 1428	-0.0270 0483 0718 1078 1078 1167 1266 1390 1416 1420	-0.0267 0478 0711 0928 1080 1168 1268 1393 1419 1424	-0.0264 0472 0708 0927 1080 1170 1270 1400 1422 1429	-0.02341 04712 07058 09270 10800 11700 12705 14034 14240 14320		
			TAB	LE III	-FUNCT	ION $-x_{\overline{d}}^{d}$	Q AGAII	NST x					

л 1	0	Q. 1	0. 2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
					λ=	$=\frac{1}{2}$					
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	0 0 0 0 0 0 0 0 0	0.00175 .00320 .00975 .01825 .02648 .03255 .04000 .04620 .05100 .05240	0.00300 .01344 .02600 .04000 .05100 .05760 .06704 .07488 .08080 .06258	0.01410 .03075 .04944 .06450 .07644 .08220 .09420 .10125 .10575 .10770	0.03200 .05584 .07712 .09200 .10304 .10304 .12966 .12940 .13056 .13280	0.05500 .08740 .10840 .13125 .13750 .14850 .16250 .15750 .16950	0.08040 .11904 .14040 .16192 .16512 .17040 .17712 .18120 .18600 .18900	0. 10290 . 14840 . 17136 . 18865 . 19880 . 20405 . 20846 . 21420 . 21945 . 22120	0, 12160 17472 20352 21760 23016 24160 24800 26320 25760	0. 14112 19980 23202 24750 25875 26550 27612 28440 29232 29610	0. 15974 . 22254 . 25684 . 26922 . 27642 . 23349 . 31319 . 32400 . 33100 . 33600
					λ=	=1					
0.1564 .3090 .4540 .5878 .7071 .8090 .8910 .9511 .9877 1.00	0 0 0 0 0 0 0 0	0.00475 .00900 .01390 .0285 .0265 .02620 .02245 .03187 .03298 .03322	0.00960 .01804 .02720 .03440 .04240 .04240 .05424 .05424 .05840 .06020 .06050	0. 01.500 . 02760 . 04050 . 05040 . 06090 . 06810 . 07680 . 08244 . 08466 . 08511	0. 02080 . 03720 . 05480 . 06680 . 07920 . 08784 . 08800 . 10480 . 10720 . 10800	0.02850 .04775 .08375 .08375 .09800 .10700 .11900 .12540 .12540 .12875 .13000	0.03300 .05880 .08400 .10110 .11700 .12648 .13680 .14496 .14880 .15030	0. 04025 . 07098 . 09982 . 11984 . 13580 . 14630 . 15575 . 16450 . 16940 . 17066	0.04800 .06400 .11720 .13920 .16488 .16640 .17600 .18688 .19120 .19280	0. 05670 . 09810 . 13500 . 15930 . 17424 . 18900 . 20025 . 21330 . 21915	0.06727 .11586 .15343 .17018 .19592 .21471 .22800 .24250 .24700 .24850
				-	λ:	=2					
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	0 0 0 0 0 0 0 0 0	0.00295 .00492 .00712 .00929 .01114 .01291 .01450 .01560 .01600 .01616	0.00588 .00998 .01440 .01874 .02200 .02538 .02840 .03068 .03122 .03142	0.00873 01500 02175 02820 03270 03729 04161 04524 04590 04614	0.01160 .02000 .02920 .03760 .04336 .04336 .05424 .05424 .05920 .06004 .06040	0. 01440 . 02500 . 03650 . 04695 . 05400 . 06035 . 07270 . 07390 . 07430	0. 01704 . 03000 . 04380 . 05616 . 06468 . 07128 . 077800 . 08580 . 08736 . 08760	0. 01960 . 03486 . 06110 . 06517 . 07546 . 08246 . 08967 . 09870 . 10038 . 10080	0.02208 .03928 .05800 .07440 .08324 .09380 .10160 .11168 .11880 .11424	0.02430 .04338 .06435 .08361 .00702 .10503 .11394 .12510 .12744 .12780	0. 02641 . 04712 . 07058 . 09270 . 10800 . 11700 . 12705 . 14034 . 14240 . 14320

68

~ *- -

and the second s

TABLE III.—FUNCTION $-x \frac{dQ}{dx}$ AGAINST x—Concluded

x _I	0	0. 1564	0. 3090	0. 4540	0. 5878	0. 7071	0. 8090	0. 8910	0. 9511	0.9877	1.00
			_		λ=	= 1/2					
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	0 0 0 0 0 0 0 0	0.00016 .00813 .01822 .03019 .04035 .04708 .05591 .06319 .06913 .07093	0.01548 .03275 .05145 .06705 .07349 .08451 .09641 .10351 .10800 .11000	0.04404 .07255 .09375 .10760 .11940 .12394 .13575 .14006 .14483 .14710	$\begin{array}{c} 0.\ 07730\\ .\ 11521\\ .\ 13696\\ .\ 14960\\ .\ 16164\\ .\ 16635\\ .\ 17340\\ .\ 17752\\ .\ 18222\\ .\ 18516 \end{array}$	0. 10430 . 16061 . 17485 . 18844 . 20683 . 20683 . 21072 . 21687 . 22168 . 22450	0. 12459 . 17798 . 20638 . 22167 . 23299 . 23987 . 24472 . 26079 . 25767 . 26131	0. 13944 . 19780 . 22988 . 24502 . 26750 . 26750 . 26329 . 27265 . 28111 . 28868 . 29225	0. 15170 21305 24491 26013 27059 27755 29579 30435 31196 31624	0. 15803 . 22075 . 25335 . 26668 . 27458 . 30767 . 31952 . 32604 . 33058	0. 15974 . 22254 . 25384 . 26922 . 27642 . 28349 . 31319 . 32400 . 33100 . 33600
					λ	=1					
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	0 0 0 0 0 0 0 0 0	0.00746 .01408 .02140 .02734 .03394 .03871 .04387 .04723 .04884 .04903	0. 01560 . 02849 . 04175 . 05185 . 06263 . 06263 . 06263 . 06999 . 07880 . 08442 . 08683 . 08720	0. 02388 . 04299 . 06233 . 07582 . 08953 . 08953 . 08843 . 10873 . 11622 . 11917 . 12008	0. 03233 . 05749 . 08217 . 09893 . 11462 . 12403 . 13431 . 14242 . 14666 . 14801	0. 04066 . 07212 . 10112 . 12148 . 13718 . 14764 . 15733 . 16581 . 17098 . 17225	0. 04854 . 08503 . 11876 . 14093 . 15662 . 16827 . 17798 . 18898 . 18335 . 19497	0. 05569 . 09667 . 13347 . 16726 . 17250 . 18693 . 18807 . 21072 . 21491 . 21633	0.06182 .10681 .14476 .16892 .18537 .20163 .21400 .22826 .23254 .23445	0.06608 .11349 .15112 .17680 .19280 .21058 .22470 .23902 .24347 .24495	0.06727 .11586 .15343 .17918 .19592 .21471 .22800 .24250 .24700 .24850
			_		λ	=2					
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	0 0 0 0 0 0 0 0 0	0.00461 .00777 • .01123 .01459 .01733 .02240 .02240 .02248 .02468 .02488 .02485	0.00899 01545 02243 02905 03368 03835 04277 04650 04722 04740	0. 01317 . 02270 . 03314 . 04268 . 04908 . 05493 . 06084 . 06660 . 06765 . 06796	0. 01675 . 02939 . 04291 . 05508 . 06338 . 06389 . 07665 . 08417 . 08576 . 08600	0. 01980 . 03521 . 05162 . 06583 . 07623 . 03223 . 09051 . 09963 . 10133 . 10175	0. 02209 . 03964 . 05849 . 07524 . 03721 . 09457 . 10266 . 11294 . 11488 . 11553	0. 02406 . 04304 . 06397 . 08277 . 09605 . 10398 . 11280 . 12385 . 12617 . 12652	0. 02539 . 04546 . 06762 . 08826 . 10272 . 11109 . 12060 . 13249 . 13496 . 13544	0. 02608 . 04662 . 06993 . 09156 . 10667 . 11556 . 12544 . 13828 . 14045 . 14114	0. 02641 . 04712 . 07058 . 09270 . 10800 . 11700 . 12705 . 14034 . 14240 . 14320

TABLE IV.—FUNCTION $x \frac{dF}{dx}$ AGAINST x

x _l x	o	0.1564	0.3090	0.4540	0.5878	0,7071	0.8090	0.8910	0.9511	0.9877	1.00
			· · · · · ·		· · ·	$\lambda = \frac{1}{2}$		· · · · ·		<u> </u>	·
0 . 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9811 . 9877 1. 00	0 0 0 0 0 0 0 0 0	$\begin{array}{c} -1.00 \\ \pm \infty \\ .79883 \\ .34549 \\ .21336 \\ .16030 \\ .13685 \\ .12638 \\ .12189 \\ .12017 \\ .11974 \end{array}$	$\begin{array}{c} -1.00 \\ -1.99303 \\ \pm \infty \\ 1.42781 \\ .63897 \\ .41011 \\ .31447 \\ .26841 \\ .24512 \\ .23403 \\ .23074 \end{array}$	$\begin{array}{c} -1.00 \\ -1.46458 \\ -2.78366 \\ \pm \infty \\ 1.99871 \\ .93133 \\ .61779 \\ .48398 \\ .41901 \\ .38579 \\ .37922 \end{array}$	$\begin{array}{c} -1.00 \\ -1.26170 \\ -1.80906 \\ -3.41645 \\ \pm \infty \\ 2.61274 \\ 1.26965 \\ .87241 \\ .70492 \\ .63067 \\ .60914 \end{array}$	$\begin{array}{c} -1.00 \\ -1.19621 \\ -1.45440 \\ -2.10410 \\ -4.03919 \\ \pm \infty \\ 3.38354 \\ 1.72629 \\ 1.24095 \\ 1.03355 \\ 1.00201 \end{array}$	$\begin{array}{c} -1.\ 00 \\ -1.\ 06355 \\ -1.\ 26665 \\ -1.\ 64334 \\ -2.\ 43710 \\ -4.\ 81641 \\ \pm \infty \\ 4.\ 53529 \\ 2.\ 45465 \\ 1.\ 83986 \\ 1.\ 75072 \end{array}$	$\begin{array}{c} -1.00 \\ -1.01614 \\ -1.15397 \\ -1.41821 \\ -1.89999 \\ -2.90544 \\ -5.935099 \\ \pm \infty \\ 6.55772 \\ 8.90597 \\ 3.42125 \end{array}$	$\begin{array}{c} -1.\ 00 \\\ 98157 \\ -1.\ 08539 \\ -1.\ 29261 \\ -2.\ 29684 \\ -3.\ 67916 \\ -8.\ 67916 \\ -8.\ 07131 \\ \pm \infty \\ 11.\ 31495 \\ 8.\ 32837 \end{array}$	$\begin{array}{c} -1.00 \\96187 \\ -1.04803 \\ -1.22783 \\ -1.53080 \\ -2.04745 \\ -8.01834 \\ -5.23205 \\ -12.97115 \\ \pm \infty \\ 35.30113 \end{array}$	-1.00 95540 -1.03613 -1.20769 -1.49506 -1.97675 -2.85105 -4.69550 -9.87439 -37.32797 ~
		1				λ=1					
0 .1564 .3090 .4540 .5878 .7071 .8090 .8910 .9511 .9877 1.00	0 0 0 0 0 0 0 0 0	-1.00 	$\begin{array}{c} -1.00 \\ -2.02000 \\ \infty \\ .92928 \\ .62835 \\ .49077 \\ .41940 \\ .37883 \\ .35886 \\ .35272 \end{array}$	$\begin{array}{c} -1.00 \\ -1.51292 \\ -3.04334 \\ \infty \\ 2.82641 \\ 1.41541 \\ .97474 \\ .77603 \\ .67518 \\ .62606 \\ .61123 \end{array}$	$\begin{array}{c} -1.00 \\ -1.33779 \\ -2.02983 \\ -4.09131 \\ \infty \\ 3.87876 \\ 1.86748 \\ 1.40438 \\ 1.40438 \\ 1.15039 \\ 1.03526 \\ 1.00149 \end{array}$	$\begin{array}{r} -1.00 \\ -1.24658 \\ -1.68390 \\ -2.72121 \\ -5.56622 \\ & & \\ &$	$\begin{array}{c} -1.00 \\ -1.19054 \\ -1.50919 \\ -2.06744 \\ -3.21099 \\ -6.66344 \\ \infty \\ 7.12155 \\ 3.96099 \\ 8.09010 \\ 2.87394 \end{array}$	$\begin{array}{c} -1.00 \\ -1.15399 \\ -1.40738 \\ -1.82101 \\ -2.54678 \\ -4.05123 \\ -8.68248 \\ \infty \\ 10.43287 \\ 6.32119 \\ 5.56464 \end{array}$	$\begin{array}{c} -1.00\\ -1.13052\\ -1.68705\\ -2.24206\\ -3.23335\\ -5.36062\\ -12.11751\\ & & \\ & &$	$\begin{array}{c} -1.00\\ -1.11731\\ -1.81349\\ -1.61849\\ -2.00846\\ -2.90145\\ -4.40589\\ -7.84804\\ -19.95323\\ \infty\\ 56.18133\end{array}$	-1.00 -1.11302 -1.30302 -1.50724 -2.05546 -2.80771 -4.16783 -7.05128 -15.16694 -58.44076 \$\overline{c}\$
						λ=2					
0 .1564 .3090 .4540 .5878 .7071 .8090 .8910 .9511 .9877 1.00	0 0 0 0 0 0 0 0 0	-1.00 	1.00 2.02393 \$\overline{2},06247 1.056855 .73259 .57977 .40669 .44934 42561 .41808	-1.00 -1.52266 -3.10970 3.22439 1.67673 1,18224 -95382 -83532 -77664 -75876	$\begin{array}{c} -1.00\\ -1.35649\\ -2.08915\\ -4.31441\\ \infty\\ 4.59422\\ 2.43642\\ 1.75803\\ 1.45735\\ 1.31929\\ 1.27851\end{array}$	-1.00 -1.27453 -1.75281 -2.73708 -5.73646 -5.73646 -5.73646 -5.258738 2.253738 2.23798 2.14041	-1.00 -1.22695 -1.58947 -2.22262 -3.53355 -7.55951 & & 8.90569 5.06961 4.00223 8.73593	$\begin{array}{c} -1.00 \\ -1.19742 \\ -1.49766 \\ -1.97925 \\ -2.82837 \\ -4.61041 \\ -10.17771 \\ \hline \varpi \\ 13.24395 \\ 8.15130 \\ 7.20978 \end{array}$	$\begin{array}{c} -1.00 \\ -1.17919 \\ -1.44428 \\ -1.85005 \\ -2.81033 \\ -3.70046 \\ -6.27367 \\ -14.59886 \\ \infty \\ 23.10187 \\ 17.22166 \end{array}$	-1.00 -1.16922 -1.41600 -1.78491 -2.38233 -3.33496 -5.17895 -9.43808 -24.56797 ~71.52164	-1.00 -1.16602 -1.40710 -1.76488 -2.31828 -3.23228 -4.90194 -8.47027 -18.64159 -73.19713 ~

TABLE V.—FUNCTION P AGAINST x FOR $\tau = 60^{\circ}$

FJ T	0	0. 1564	0. 3090	0. 5878	0. 8090	0.9511	1.00						
	λ=1/2												
0. 1584 . 3090 . 5878 . 8090 . 9511 1. 00	2. 2478 1. 5673 . 9259 . 6084 . 4482 . 3986	1.9613 1.4980 .8830 .5696 .4113 .3600	1. 4980 1. 2413 . 7646 . 4963 . 3580 . 3046	0.8830 .7646 .5146 .3280 .2230 .1866	0.5696 .4963 .3280 .1946 .1146 .0826	0. 4113 . 3580 . 2230 . 1146 . 0446 . 0213	0.3600 .3046 .1866 .0826 .0213 0						
	λ=1												
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	2. 2463 1. 5655 . 9228 . 6039 . 4425 . 3924	2.0200 1.5000 .8834 .5700 .4200 .3734	1.5000 1.3134 .8267 .5300 .3800 .3300	0. 8834 . 8267 . 6069 . 3900 . 2567 . 2134	0.5700 .5300 .3900 .2400 .1367 .1000	0. 4200 . 3800 . 2567 . 1367 . 0567 . 0267	0. 3734 . 3300 . 2134 . 1000 . 0267 0						
			λ:	-2									
0. 1564 . 3090 . 5578 . 8090 . 9511 1. 00	2. 1727 1. 4928 . 8488 . 5295 . 3678 . 3177	2. 2333 1. 5200 . 8667 . 5333 . 3667 . 3133	1,5200 1,2687 ,7700 ,4900 ,3367 ,2867	0. 8887 . 7700 . 5367 . 3867 . 2500 . 2067	0. 5333 . 4900 . 3667 . 2433 . 1467 . 1067	0. 3667 . 3367 . 2500 . 1467 . 0600 . 0267	0.3133 .2867 .2067 .1067 .0267 0						

TABLE VI.—FUNCTION P AGAINST x FOR $\tau = 120^{\circ}$

x x ₁	0	0. 1564	0. 3090	0. 5878	0. 8090	0. 9511	1.00						
$\lambda = \frac{1}{2}$													
0.1564 .3090 .5878 .8090 .9511 1.00	2. 2825 1. 6020 . 9606 . 6431 . 4829 . 4333	1.6693 1.2393 .8000 .5377 .3960 .3547	1. 2393 . 9860 . 6460 . 4360 . 3160 . 2813	0.8000 .6460 .4280 .2777 .1893 .1640	0.5377 .4360 .2777 .1693 .0977 .0777	0.3960 .3160 .1893 .0977 .0360 .0167	0.3547 .2813 .1640 .0777 .0167 0						
	λ=1												
0.1564 .3090 .5878 .8090 .9511 1.00	2.4163 1.7355 1.0928 .7739 .6125 .5624	1.8234 1.3934 .9067 .6500 .5100 .4600	1.3900 1.1100 .7567 .5300 .4134 .3634	0.9067 .7567 .4967 .3434 .2534 .2067	0.6500 .5300 .3434 .2067 .1300 .0934	0. 5100 . 4134 . 2534 . 1300 . 0634 . 0300	0. 4600 . 3634 . 2067 . 0934 . 0300 0						
·			λ=	-2									
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	2. 4794 1. 7985 1. 1555 . 8362 . 6745 . 6244	$\begin{array}{c} 1. \$934\\ 1. 5133\\ 1. 0267\\ . 7267\\ . 5600\\ . 5067\end{array}$	1. 5133 1. 2800 . 8800 . 6067 . 4534 . 4000	1. 0267 . 8800 . 6000 . 3934 . 2667 . 2200	0. 7267 . 6067 . 3934 . 2334 . 1334 . 1000	0.5600 .4534 .2667 .1334 .0534 .0267	0.5067 .4000 .2200 .1000 .0267 0						

TABLE VII.—FUNCTION P AGAINST x FOR $\tau = 180^{\circ}$

II I	0	0. 1564	0. 3090	0. 5878	0. 8090	0.9511	1.00						
	$\lambda = \frac{1}{2}$												
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	2. 1518 1. 4713 . 8299 . 5124 . 3522 . 3026	1.5686 1.1586 .7106 .4653 .3220 .2786	1. 1586 . 9320 . 5973 . 3920 . 2753 . 2320	0.7106 .5973 .3986 .2573 .1736 .1386	0. 4653 . 3920 . 2573 . 1600 . 0986 . 0680	0.3220 .2753 .1736 .0980 .0470 .0220	0. 2786 . 2320 . 1386 . 0680 . 0220 0						
	λ=1												
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	2, 3063 1, 6255 , 9828 , 6639 , 5025 , 4524	1.6867 1.2667 .8100 .5600 .4100 .3634	1. 2867 . 9934 . 6534 . 4534 . 3300 . 2934	0.8100 .6534 .4367 .2934 .2034 .1767	0.5600 .4534 .2934 .1834 .1100 .0834	0. 4100 . 3300 . 2034 . 1100 . 0433 . 0200	0.3034 .2934 .1707 .0834 .0200 0						
			λ.	⇒2									
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	2. 4060 1. 7251 1. 0821 . 7628 . 6011 . 5511	1.7433 1.3000 .8400 .5933 .4633 .4200	1.3000 .9933 .6533 .4600 .3466 .3066	0. 8400 . 6533 . 4200 . 2733 . 1966 . 1633	0. 5933 . 4600 . 2733 . 1600 . 1000 . 0733	0. 4033 . 3466 . 1966 . 1000 . 0400 . 0200	0.4200 .3066 .1633 .0733 .0200 0						

TABLE VIII.—FUNCTION P AGAINST x FOR $\tau = 240^{\circ}$

I I I	0	0. 1584	0. 3090	0. 5878	0. 8090	0. 9511	1.00							
	$\lambda = \frac{1}{2}$													
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	1. 8785 1. 1980 . 5566 . 2391 . 0789 . 0293	1.4720 1.1153 .5693 .2800 .1220 .0680	1. 1153 . 9320 . 5453 . 2853 . 1287 . 0720	0. 5693 . 5450 . 4066 . 2413 . 1220 . 0773	0. 2800 . 2853 . 2413 . 1573 . 0787 . 0453	0. 1220 . 1287 . 1220 . 0787 . 0320 . 0120	0.0680 .0720 .0773 .0453 .0120 0							
	λ⇒1													
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	2.0296 1.3482 .7071 .3872 .2258 .1757	$\begin{array}{c} 1.5867\\ 1.1833\\ .6767\\ .3967\\ .2400\\ .1833\end{array}$	1. 1833 . 9633 . 5933 . 3600 . 2234 . 1767	0. 6767 . 5933 . 4067 . 2567 . 1633 . 1267	0. 3967 . 3600 . 2567 . 1567 . 0000 . 0633	0. 2400 . 2234 . 1633 . 0900 . 0433 . 0200	0. 1833 . 1767 . 1267 . 0633 . 0200 0							
			λ	-2										
0.1564 .3090 .5878 .8090 .9511 1.00	2. 1927 1. 5118 . 8688 . 5495 . 3878 . 3377	1.7033 1.3033 .8167 .5300 .3700 .3167	1. 3033 1. 0967 . 7300 . 4767 . 3300 . 2767	0. 8167 . 7300 . 5200 . 3433 . 2200 . 1800	0. 5300 . 4767 . 3433 . 2167 . 1267 . 0933	0. 3700 . 3300 . 2200 . 1267 . 0567 . 0267	0. 3107 . 2767 . 1800 . 0933 . 0267 0							

TABLE IX.—FUNCTION P AGAINST x FOR $\tau = 300^{\circ}$

z 1	0	0,1564	0.3090	0.5878	0.8090	0.9511	1.00						
λ=1/2													
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	I. 4198 . 7393 . 0979 2196 3798 4294	1. 4933 . 9400 . 3100 0600 2634 3400	0.9400 1.0566 .4566 .0766 1534 2434	0. 3100 . 4566 . 4400 . 2233 . 0233 0634	-0.0600 .0766 .2233 .2100 .0866 .0133	-0.2734 1534 .0233 .0866 .0466 .0066	-0.3400 2434 0634 .0133 .0066 0						
	λ=1												
0.1564 .3090 .5878 .8090 .9511 1.00	1, 4296 .7488 .1061 2128 3742 4243	1. 3467 . 9567 . 2433 0967 2700 3200	0. 9567 . 9067 . 4100 . 0333 1600 2133	0. 2433 . 4100 . 4333 . 1833 . 0167 0367	-0.0967 .0333 .1833 .1900 .0900 .0367	-0.2700 1600 .0167 .0900 .0567 .0200	-0.3200 2133 0367 .0367 .0200 0						
				λ=2									
0.1564 .3090 .5878 .8090 .9511 1.00	1. 6794 . 9985 . 3555 . 0362 1255 1756	1.9600 1.3000 .5534 .1734 0100 0600	1. 3000 1. 1200 . 6334 . 2834 . 0867 . 0234	0.5534 .6334 .5234 .3000 .1434 .0800	0. 1734 . 2834 . 3000 . 1434 . 0967 . 0534	-0.0100 .0867 .1434 .0967 .0467 .0200	0.0600 .0234: .0800 .0534 .0200 0						

TABLE X.—FUNCTION $\frac{dP}{dx}$ AGAINST τ FOR $\lambda = \frac{1}{2}$

(deg)	60	120	180	240	300					
	x ⊨0									
0, 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1, 00	2.2667 .2667 4133 3300 3017 2500	-3. 3333 -1. 8667 -1. 0267 7333 5733 5400	6,0000 1,9333 ,8333 ,4800 ,3000 ,2600	-2.2667 2667 .4133 .3300 .3017 .2600	3. 3333 1. 8667 1. 0267 . 7333 . 5733 . 5400					
ļ		<i>x</i> =	1.00							
0, 1564 , 3090 , 4540 , 5878 , 7071 , 8090 , 8910 , 9511 , 9877 1, 00	-0. 9367 8767 7300 5850 5033 4767	0. 8633 7467 5800 4700 4100 3967	-0, 9333 -, 7933 -, 6183 -, 4867 -, 4000 -, 3693	-1. 0133 9967 8533 6650 4733 4333	-1. 190 -1. 340 -1. 4133 -1. 1567 6700 4333					

TABLE XI.—FUNCTION $\frac{dP}{dx}$ AGAINST τ FOR $\lambda=1$

(deg) x1	60	120	180	240	300						
	<i>x</i> =0										
0. 1564 . 3090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	5.0667 .7667 .2133 0533 1400 1667	8. 6667 1. 9333 9667 6933 6400 6200	-10. 3333 -3. 4667 -1. 1000 7500 5200 4800	5.0667 7667 2133 .0533 .1400 .1667	8. 6667 1. 9333 . 9667 . 6933 . 6400 . 6200						
		Ĩ=	- 1.00								
0. 1564 . 3090 . 4540 . 5578 . 7071 . 8090 . 8910 . 9511 . 9877 1. 00	-0.9567 9733 8133 6633 5967 5533	-0. 8533 7933 6267 5100 4633 4467	-0. 8400 7600 5767 4600 4100 3800	-0. 9533 8667 6600 4833 4033 3633	-1.0300 -1.0733 9533 6467 3333 2900						

TABLE XII.—FUNCTION $\frac{dP}{dx}$ AGAINST τ FOR $\lambda=2$

(degr) x ₁	60	120	180	240	300						
	x=0										
0.1564 .3090 .4540 .5878 .8090 .8010 .9511 .8577 1.00	11. 3333 2. 8000 		-16. 3333 5. 6667 1. 2000 7667 6333 5667	-11. 3333 -2 8000 6833 2533 2000 1600	8.833 2.400 						
0. 1564 . 8090 . 4540 . 5878 . 7071 . 8090 . 8910 . 9811 . 9877 1. 00	-0. 9783 -1. 0583 9467 7200 6200 5600	0. 9067 7600 5667 5667 5000 4867	-0.7733 6400 5000 4867 4500 3800	-0.7467 7200 4800 4067 3600 3400	-0.8000 8400 7200 5467 4287 2333						

•

.

FI T	0.1564	0.3090	0.5878	0.8090	0.9511	1.00	
			τ=60°		·		
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0, 399 , 194 , 105 , 074 , 055 , 050	0.890 .570 .261 .159 .124 .111	1.044 .877 .526 .375 .309 .280 .	0.964 .787 .623 .460 .379 .347	0.933 .810 .695 .532 .448 .417	0.9367 .8767 .7300 .5850 .5033 .4767	
			τ=120°	·			
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0.528 .316 .162 .117 .085 .075	0.662 .457 .269 .200 .154 .142	0.785 .609 .411 .321 .266 .249	0.834 .600 .508 .406 .342 .328	0.859 .731 .562 .453 .391 .375	0. 8633 .7467 . 5800 4700 .4100 . 3967	
		·	r≕180°	<u> </u>	·	·	
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0.507 .264 .118 .064 .044 .041	0.679 .465 .238 .149 .106 .101	0.736 .611 .394 .273 .208 .184	0.823 .663 .482 .377 .285 .260	0.908 .752 .579 .454 .358 .334	0.9333 .7933 .6183 .4867 .4000 .3693	
			τ=240°			·	
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0.397 .147 .008 020 018 014	0. 6999 . 431 . 091 . 025 . 002 008	0.924 .771 .381 .159 .059 .042	0.987 .905 .663 .400 .228 .194	1.0090 .973 .816 .598 .4015 .363	1.0133 .9967 .8533 .6650 .4733 .4333	
$\tau \simeq 300^{\circ}$							
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0. 6200 2030 2074 1372 1175 0940	0.9070 .3380 1591 2385 2148 2042	1. 1330 1. 0800 . 3590 1734 2933 3245	1.216 1.3222 1.021 .402 025 067	1.209 1.350 1.360 .970 .465 .284	1. 1900 1. 3400 1. 4133 1. 1567 . 6700 . 4333	

TABLE XIIIFUNCTION	$-x\frac{dP}{dx}$	AGAINST	x	FOR	$\lambda = \frac{1}{2}$
--------------------	-------------------	---------	---	-----	-------------------------

TABLE XIV.—FUNCTION $-x\frac{dP}{dx}$ AGAINST x FOR $\lambda = 1$

x 1	0. 1564	0. 3090	0. 5878	0. 8090	0.9511	1.00		
			$\tau = 60^{\circ}$					
0.1564 .3090 .5878 .8090 .9511 1.00	0.450 .130 .050 .038 .035 .029	0.943 .463 .163 .117 .105 .099	1. 020 . 970 . 568 . 348 . 290 . 270	0.990 .918 .778 .602 .468 .427	0.964 .940 .811 .660 .570 .528	0. 9507 . 9733 . 8133 . 6033 . 5967 . 5533		
		·	τ≕120°					
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0.515 .318 .167 .124 .106 .095	0.711 .480 .292 .228 .191 .179	0.817 .640 .466 .375 .336 .318	0.849 .7295 .559 .464 .426 .404	0.853 .778 .610 .501 .460 .440	0.8533 .7933 .6207 .5100 .4633 .4407		
	·	·	τ=180°		·			
0.1564 .3090 .5878 .8090 .9511 1.00	0.518 .307 .162 .110 .087 .080	0.668 .470 .283 .191 .158 .147	0.770 .622 .419 .319 .2705 .2505	0.814 .7105 .510 .403 .350 .326	0.834 .748 .560 .4490 .395 .369	0.840 .760 .577 .460 .410 .380		
			$\tau = 240^{\circ}$					
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0.442 .205 .068 .022 .002 .002	0.733 .460 .198 .095 .052 .039	0.890 .688 .415 .256 .163 .134	0.937 .794 .565 .379 .274 .235	0. 9505 . 8500 . 6400 . 456 . 364 . 324	0. 9533 . 8667 . 0600 . 4833 . 4033 . 3633		
	τ=300°							
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0. 241 051 175 128 108 109	0. 967 . 298 259 244 230 214	1. 1580 1. 1266 . 516 205 330 308	1. 1033 1. 2224 . 995 . 314 037 030	1.0533 1.1300 1.0330 .6067 .215 .185	1.0300 1.0733 .9533 .6407 .3333 .2900		

TABLE XV.—FUNCTION $-x\frac{dP}{dx}$ AGAINST x FOR $\lambda=2$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	л ^д	0.1564	0.3090	0.5878	0.8090	0.9511	1.00			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	r=60°									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.1564 .3090 .5878 .8090 .9511 1.00	0.880 .097 .035 .027 .021 .017	1.019 .723 .282 .110 .081 .067	1.061 .834 .448 .305 .235 .210	1.040 .939 .642 .509 .422 .384	0.9985 1.023 .881 .6615 .568 .514	0.9733 1.0533 .9467 .7200 .6200 .5000			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				τ≖120°		-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0. 473 . 260 . 142 . 117 . 1035 . 0942	0. 655 . 480 . 301 . 239 . 221 . 210	0.856 .781 .583 .442 .879 .358	0. 922 . 882 . 750 . 560 . 462 . 441	0.918 .8195 .700 .5775 .495 .477	$\begin{array}{r} 0.\ 9067\\ .\ 7600\\ .\ 6600\\ .\ 5667\\ .\ 5000\\ .\ 4867\end{array}$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	τ=180°									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0, 1564 . 3090 . 5878 . 8090 . 9511 1, 00	0.551 .373 .220 .153 .124 .122	0.707 .516 .327 .256 .200 .197	0.752 .581 .419 .332 .281 .262	0. 740 . 612 . 465 . 379 . 327 . 301	0. 7550 . 631 . 491 . 451 . 394 . 351	0.7738 .6400 .5000 .4867 .4500 .3800			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				r⇔240°						
$\tau = 300^{\circ}$ 0.1564 0.847 1.087 1.202 1.121 0.943 0.8	0, 1564 . 3090 . 5878 . 8090 . 9511 1, 00	0.439 .208 .077 .043 .033 .029	0.689 .406 .200 .119 .100 .091	0. 893 . 708 . 460 . 322 . 278 . 262	0. 914 . 814 . 646 . 489 . 3996 . 381	0.832 .788 .585 .452 .391 .376	0.7467 .7200 .4800 .4067 .3600 .3400			
0. 1564 0. 847 1. 087 1. 202 1. 121 0. 943 0. 8	r⇔800°									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 1584 . 3090 . 5878 . 8090 . 9511 1, 00	0.847 .046 149 127 107 100	1.087 .482 040 161 160 140	1.202 1.000 .481 .162 .045 008	1, 121 1, 118 .862 .498 .281 .166	0.943 1.039 .837 .5585 .412 .230	0.8000 .8400 .7200 .5467 .4267 .2333			

TABLE XVI.—VALUES OF $\sum -x \frac{dP}{dx}$ AGAINST x FOR 3-BLADE AND 6-BLADE PROPELLERS

[For 3-blade propeller, $\tau = 120^{\circ}$ and 240°; for 6-blade propeller, $\tau = 60^{\circ}$, 120° , 180° , 240° , and 800]^o

<u> </u>										
FI T	0. 1564	0. 3090	0. 5878	0.8090	0. 9511	1.00				
	3-blade propeller; $\lambda = \frac{1}{2}$									
0 . 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0 . 923 . 463 . 170 . 097 . 067 . 061	0 1. 361 . 888 . 360 . 225 . 156 . 134	0 1. 709 1. 380 . 792 . 480 . 325 . 291	0 1.821 1.595 1.171 .806 .570 .522	0 1. 868 1. 704 1. 378 1. 051 . 7925 . 738	0 1. 8766 1. 7434 1. 4333 1. 135 . 8833 . 8300				
		8-1	blade prope	iler; λ=1						
0. 1564 . 3090 . 5878 . 8090 . 9511 1. 00	0.957 .523 .235 .146 .108 .0956	L 444 . 940 . 490 . 323 . 243 . 218	1. 707 1. 328 . 881 . 631 . 499 . 452	1.786 1.5235 1.124 .843 .700 .639	1, 8035 1, 628 1, 250 . 957 . 824 . 764	1.8066 1.660 1.2867 .9933 .8666 .8100				
		3-b	lade propell	er; λ=2						
0 .1584 .3090 .5878 .8090 .9511 1.00	0 .912 .468 .219 .160 .1365 .1232	0 1. 344 . 886 . 501 . 358 . 321 . 301	0 1. 749 1. 489 1. 043 . 764 . 667 . 620	0 1. 836 1. 696 1. 396 1. 049 . 8616 . 822	0 1.750 1.6075 1.285 1.0295 .886 .853	0 1.6534 1.5067 1.1400 .9734 .8600 .8267				
		6-1	olade propel	ler; $\lambda = \frac{1}{2}$						
0 .1564 .3090 .5878 .8090 .9511 1.00	0 2,4490 .718 .1856 .0978 .0485 .0580	0 3.837 2.261 .6999 .2945 .1712 .1418	0 4. 622 3. 948 2. 071 . 9546 . 5487 . 4305	0 4.824 4.367 3.297 2.045 1.209 1.062	0 4.918 4.616 4.012 3.007 2.0635 1.773	0 4. 9366 4. 7534 4. 1949 3. 3634 2. 4566 2. 1093				
	•	6	-blade prope	ller; λ=1	•	·				
0 .1564 .3090 .5878 .8090 .9511 1.00	0 2,166 .909 .272 .166 .122 .0956	0 4.022 2.171 .677 .387 .276 .250	0 4.655 4.0466 2.384 1.093 .7295 .6845	0 4.6933 4.3654 3.407 2.163 1.431 1.312	0 4. 6548 4. 446 3. 654 2. 6733 2. 004 1. 846	0 4. 6333 4. 4666 3. 6303 2. 7633 2. 2066 2. 0333				
		6	blade prop	eller; $\lambda = 2$	·					
0 .1564 .3090 .5878 .8090 .9511 1.00	0 .984 .325 .213 .1745 .1622	0 4.157 2.607 1.070 .563 .442 .425	0 4.764 3.904 2.391 1.563 1.218 1.084	0 4.737 4.365 3.365 2.435 1.8916 1.673	0 4. 4485 4. 3005 3. 474 2. 7005 2. 280 1. 948	0 4. 200 4. 040 3. 3067 2. 7268 2. 3567 2. 000				

0

.

۰. ۲

.

۰. ۲

.

۰. ۲