The growth of the oceanic boundary layer during the COARE intensive observational period: Large Eddy simulation results

PDF Version Also Available for Download.

Description

A principal goal of the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) is to gain an understanding of the processes that control mixing in the upper 100 m of the western tropical Pacific warm pool. The warm pool is an important heat reservoir for the global ocean and is responsible for many of the observed climatic changes associated with El Nino/Southern Oscillation (ENSO) events. This water mass is highly sensitive to mixed-layer processes that are controlled by surface heat, salinity, and momentum fluxes. During most of the year, these fluxes are dominated by solar heating and occasional ... continued below

Physical Description

5 p.

Creation Information

Skyllingstad, E.D.; Wijesekera, H.W. & Gregg, M.C. March 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A principal goal of the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) is to gain an understanding of the processes that control mixing in the upper 100 m of the western tropical Pacific warm pool. The warm pool is an important heat reservoir for the global ocean and is responsible for many of the observed climatic changes associated with El Nino/Southern Oscillation (ENSO) events. This water mass is highly sensitive to mixed-layer processes that are controlled by surface heat, salinity, and momentum fluxes. During most of the year, these fluxes are dominated by solar heating and occasional squalls that freshen the top of the mixed layer and force shallow mixing of about 10-20 m. From November to April, the usual weather pattern is frequently altered by westerly wind bursts that are forced by tropical cyclones and intraseasonal oscillations. These wind bursts generate a strong eastward surface current and can force mixing as deep as 100 m over a period of days. Observations from the intensive observation period (IOP) in COARE indicate that mixed-layer deepening is accompanied by strong turbulence dissipation at the mixed layer base. A short westerly wind burst occurred during the first leg of TOGA-COARE, and lasted about 4-5 days. During this period, the maximum winds were about 10 m s{sup -1}, and the resulting eastward surface flow was about 0.5 m s{sup -1}. The strength of this event was somewhat weaker than a typical westerly wind burst, but the mixed-layer structure and growth are similar to the more vigorous wind bursts discussed.

Physical Description

5 p.

Notes

OSTI as DE96002627

Source

  • 11. symposium on boundary layers and turbulence, Charlotte, NC (United States), 27-31 Mar 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96002627
  • Report No.: PNL-SA--25619
  • Report No.: CONF-950381--6
  • Grant Number: AC06-76RL01830
  • Office of Scientific & Technical Information Report Number: 135027
  • Archival Resource Key: ark:/67531/metadc621275

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • June 23, 2016, 10:03 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Skyllingstad, E.D.; Wijesekera, H.W. & Gregg, M.C. The growth of the oceanic boundary layer during the COARE intensive observational period: Large Eddy simulation results, article, March 1, 1995; United States. (digital.library.unt.edu/ark:/67531/metadc621275/: accessed December 15, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.