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ABSTRACT 

A Landau fluid model for dissipative trapped electron modes is developed which 
focuses on an improved description of the ion dynamics. The model is simple enough to 
allow nonlinear calculations with many harmonics for the times necessary to reach saturation. 
The model is motivated by a discussion that starts with the gyro-kinetic equation and 
emphasizes the importance of simultaneously including particular features of magnetic drift 
resonance, shear, and Landau effects. To ensure that these features are simultaneously 

incorporated in a Landau fluid model with only two evolution equations, a new approach to 
determining the closure coefficients is employed. The effect of this technique is to reduce 
the matching of fluid and kinetic responses to a single variable, rather than two, and to allow 
focusing on essential features of the fluctuations in question, rather than features that are only 
important for other types of fluctuations. Radially resolved nonlinear calculations of this 
model, advanced in time to reach saturation, are presented to partially illustrate its intended 
use. These calculations have a large number of poloidal and toroidal harmonics to represent 
the nonlinear dynamics in a converged steady state which includes cascading of energy to 
both short and long wavelengths. 



1. INTRODUCTION 

Here we discuss a gyro-Landau fluid1-’ model for Dissipative Trapped Electron 
Modes (DTEM).12-20 DTEM turbulence is one of the mechanisms invoked to explain 
fluctuations and transport at the core of tokamaks.12 To address core turbulence questions, 
fluid models have previously been used to perform spatially resolved calculations of DTEM 
turbulence.14J6 In contrast to some of the more abundant local descriptions15J7 where the 
evolution of the trapped electron species is followed in time, the spatially resolved models 
have largely concentrated on simplified trapped electron dynamics reduced to the “i6 
model.”*3 These models have, so far, also been limited to highly collisional treatments of the 
ion dynamics in the absence of finite Larmor radius effects, which are less applicable to the 
hotter core plasmas of present-day tokamaks. In the gyro-Landau fluid model developed 
here, both of these restrictions on the ion dynamics are relaxed, and new effects caused by the 
velocity dependence of magnetic drifts are introduced. 

Thus a major focus of this paper is on an improved description of the ion dynamics 
in a way which minimizes the number of evolution equations. The ultimate use of this model 
is in nonlinear calculations in which the dominant nonlinear effect is advection: the transport 
of fluctuating macroscopic quantities by the fluctuating E X  B velocity. An example of such 

nonlinear calculations is included at the end of this paper. 
The motivation for the simplified slab model developed here arises from the 

nonlinear effects it is intended to study. The nonlinearities cascade energy to both high and 
low perpendicular wave numbers. Thus there is little hope of reaching a saturated state unless 
the linearized modes are damped at high perpendicular wave numbers, and a sufficient 

number are included to dissipate the energy. Of course one can include ad hoc damping at 
high wave numbers, but the question then arises as to how sensitive the amplitude of the 
saturated state is to the ad hoc damping, and whether the magnitude of the ad hoc damping is 
credible (e.g., comparable to neoclassical diffusion in a tokamak). To answer these questions 

requires calculations with a large number of time steps for a substantial number of modes (the 
simple example discussed at the end of this paper has 104 time steps and 192 poloidal mode 
numbers). Such calculations tax the memory available on present day computers and require 
considerable computation time. Since memory and time requirements increase at least 
linearly with the number of evolution equations, there is a premium plaqed on simplifying 
and minimizing the number of evolution equations. 

To minimize the number of evolution equations we have introduced a technique 
which may be of use for other similar modes and problems. By making the closure 
coefficients functions of the poloidal mode number, we effectively reduce the matching of 
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fluid and kinetic response functions from a two dimensional problem to one in a single 
variable. We focus on the features of DTEM that are important to retain and do not attempt 
to fit features of other modes, such as Ion Temperature Gradient (ITG) m ~ d e ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  or 

the electromagnetic Toroidal Alfvtn Eigenfunctions ( T A E ) . 6 9 2 1 9 2 2 1 2 3 9 2 4  The advantage to this 
technique is that it reduces the number of evolution equations. The disadvantage is that one 
cannot reasonably expect that the closure coefficients chosen in this way will provide equally 
good fits to other types of fluctuations (e.g., ITG and TAE). This is in contrast to the 

approach taken in Refs. 19 and 20, which in principle can treat a variety of fluctuations, in 
toroidal geometry. At the time of this writing, the only published graphical comparison 
between their fluid treatment and linearized kinetic DTEM calculations as functions of 
perpendicular wave number is in Ref. 20. This comparison is for 9 or 10 evolution 
equations (6 ion evolution equations and 3 or 4 electron evolution equations) and is limited 
to positive growth rates (no marginally stable or damped cases are shown). Because of this, 
and because there are no published spectral decompositions of saturated nonlinear states, it 
remains to be seen how efficacious the approach taken in Refs. 19 and 20 will be for treating 
the problem examined in this paper. 

To reiterate, we have focused on maintaining simplicity here and eschewed including 
effects that might be added at a later time, or are better treated in a more fully kinetic 

approach. In this regard we should mention that initial comparisons of this nonlinear fluid 
approach with one using gyrokinetic simulation techniques is extremely enco~rag ing .~~  

While we use as simple a model as possible for the linear processes, we do include 
what seem to us to be the critical physical mechanisms. A key requirement is that the 
spectrum of linear modes should be stable (or damped) at high poloidal mode numbers to be 
able to legitimately use a finite number of modes. This requirement led us to include ion 
magnetic drift resonance damping, since otherwise, as we shall see, the modes are unstable for 
large poloidal mode number.8.9 We also include ion Landau damping because it limits the 
radial extent of the unstable and moderately damped modes, and eliminates spurious radial 
oscillations. This also permits us to include shear damping, which significantly reduces the 
growth rate of the most unstable modes and helps suppress spurious noise. We also insist that 
the several macroscopic quantities have the correct parity with no discontinuities at the 
rational surface where the fluctuating electrostatic potential is largest. The above requirements 

allow us to determine coefficients in the closure relations in the Landau fluid approach. 
There are a number of other approximations that we have made. One is for the 

electron linear response function, where we use a simple " i6-modelYy13 appropriate for 
strongly dissipative trapped electrons. This approximation was replaced by a time evolution 
equation for the density and showed no differences at the linear level for the parameters of 
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interest here, so we regard the ” &model” as adequate for our present purposes. In this paper 

we include the ion curvature drift, but neglect the ion gradient-B drift. This reduces the 

amount of numerical computation by about two orders of magnitude at the linear level and 
can be compensated by modest changes in the numerical value of parameters (e.g., a 30% 

change in the 6 parameter appearing in the electron model). 
It was initially hoped that a combination of shear, Landau, and finite Larmor radius 

(FLR) effects (without ion magnetic drift resonance damping) would stabilize the modes at 
high poloidal mode number for the equilibrium parameters of interest. A sequence of 
increasingly sophisticated calculations convinced us that this was not the case and gave 
insights into which approximations were most accurate. While we do not wish to obscure the 
body of the paper with these matters, it does seem appropriate to mention them here in the 
introduction because they motivated our choices and may be useful in other applications. 

The primary FLR effects come from the function &(b) = I,(b)exp(-b) in a simple 
slab model, where b E k:p:, kL is the perpendicular wave number and pi is the ion gyro- 

radius. In sheared geometry, the parallel wave number is a function of radial position 
through the equilibrium rotational transform or the “safety-factor.” In sheared geometry b 
becomes a differential operator and does not commute with the parallel wave number. The 

numerical approach of Linsker26 avoids these problems. Although the Linsker approach is 
not especially well suited for nonlinear problems, it does allow one to compare 
approximations at the linear level with a more exact numerical computation. 

Two simple approximations are available when dealing with more complex geometry. 
One is the Pade a p p r ~ x i m a t i o n , ~ ~ * ~ *  r, G 1/(1+ b). The other is the Ross-Mahajan 

a p p r o x i m a t i ~ n , ~ ~ ~ ~ ~  which we use in this paper. We compared numerical results using these 
two approximations with the approach of Linsker. For b below ten, the Pade and Ross- 
Mahajan approaches both gave reasonable approximations. For lbl> 10, the Ross-Mahajan 
approach gave good agreement, while the Pade approximation did not. 

We also examined the so-called Linsker for these modes (non- 
commutation of b and 4,). Analytically, one would expect this effect to be small because the 
equilibrium scale lengths are so much longer than the fluctuating quantity scale lengths. 
Numerically, we found that the effect was very small, so one could neglect the fact that the 
parallel wave number did not precisely commute with the differential operator b. However, 
we did note that it is possible to misinterpret numerical results and draw incorrect conclusions. 
The problem lies in the fact that different radial eigenmodes (e.g., “radial mode numbers” 
of zero and one) can have eigenvalues that are relatively close, and care must be taken to 

assure oneself of the continuity of the numerical results during a search for eigenvalues as a 

function of b. 
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The paper is organized as follows: in Sec. I1 a kinetic model is developed from the 
gyro-kinetic equation. The properties of this kinetic model, which will be approximated by 
the fluid model, are developed and discussed. The effects of magnetic resonance damping, 
shear damping, and Landau damping are illustrated numerically and discussed analytically. 

In Sec. I11 the fluid model is developed by taking moments of the gyro-kinetic 
equation and appending suitable closure relations. The coefficients in these closure relations 
are determined by constraints that allow matching of the fluid results to the kinetic results. 
The rationale for the choices of constraints is presented, particularly techniques that prevent 
spurious residual instabilities from occurring at the linear level. The linear fluid evolution 
equations are presented. The results of numerical comparison of the fluid and kinetic models 
are illustrated graphically. 

In Sec. IV the nonlinear calculations are presented. The nonlinear fluid evolution 
equations, with advection, are presented, and the reason for an additional stabilizing term is 
discussed. The effect of this term is examined linearly, and toward the end of this section 

some nonlinear effects are shown. The numerical methods used for the nonlinear 
calculations are discussed. A particular nonlinear example is presented, which goes far 
beyond the transient phase and reaches nonlinear saturation. 

In Sec. V we summarize and discuss the results of this paper, as well as some 

extensions. 

2. KRVETICMODEL 

In this section we develop the kinetic model. We also discuss the features of the 
kinetic model that are incorporated in the fluid model presented in Sec. 111. We begin by 
introducing notation and developing expressions that will be needed in later sections. We 
focus first on simple slab geometry without shear and then introduce the changes needed to 
treat cases with sheared magnetic fields. 

2.1 Kinetic Equation and Notation 

Our starting point for ions is the ion Gyro-Kinetic Equation (GKE) for electrostatic 

fluctuations averaged over the gyr0-angle:~~~3~ 

where the ion gyro-angle averaged first-order distribution function, A , is given by 
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and the lowest order ion distribution function, F, has been assumed to be a Maxwellian. 
From Eqs. (1) and (2) we find that the perturbed ion density is given by 

-=-M[l+ nil - w 
120 Ti0 

As mentioned in the introduction, here we only include the curvature drift and omit the 
gradient-B drift: 

and 

In this case, the velocity space average in Eq. (3) can be written as 

where 
ro(b) = Io(b)e-b , 
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0 A=--, 
O d O  

and 
Toy” 
mix 

v, = - 

2 is the plasma dispersion and Io is a modified Bessel function. 
If one can neglect ion magnetic drift, h >> 1, and Qi reduces to the relatively familiar 

expression 

In the limit of zero k,] (infinite c), Eq. (9) reduces to 

If the imaginary part of o (and A) is small compared to the real part, and lc,, = 0, then 

This behavior will dominate ion resonant damping. 
Before considering the electron behavior, we note that just as one obtains the 

perturbed density from the GKE, one can obtain the fluctuating ion macroscopic parallel 

velocity: 

From this we can see that y is an odd function of lc,, [replace in Eq. (17), and then 
change the variable of integration from vlI to -vlI]. This is a specific example of the fact that 
odd moments of the perturbed distribution function are odd functions of and even 

by - 
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moments are even functions of 4,. We will make use of this fact in Sec. 111 when we need to 

impose constraints on the coefficients appearing in the closure relations. 
For the electrons, following Carreras et a1.,16 we assume that we are in the dissipative 

trapped electron regime 

where 
6 3 1 . 5 ~  K ~ , o * ~ / v , ,  . 

Note that here we have included electron temperature gradients, through q,, while the ion 

treatment neglects ion temperature gradients. The electron temperature gradient is included 

so that neglect of frequency dependence in the electron response is more legitimate. 
Neglecting the ion temperature gradient is done for two reasons. One is that we do not want 
to complicate the analysis with the possibility of ion temperature gradient modes. The other 
reason is that if ion temperature gradients were carefully taken into account we would have to 
use at least three evolution equations in the Landau fluid treatment:6 by neglecting ion 
temperature gradients we only need to use two ion fluid evolution equations. 

2.2 Local Dispersion Relation 

quasineutrality relation, ne, = n,, . This is conveniently written in the form 
To obtain the local dispersion relation, we substitute Eqs. (3) and (18) into the 

where 

This form of the dispersion relation given in Eq. (20) is useful for obtaining solutions by 
iteration. To obtain the initial guess for the iteration, one sets Qi = 1 and 6 = 0 in the right 

side of Eq. (20): 
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which gives the generally correct trend that the real part of the frequency is near w,, for 
small bi and decreases as bi increases. The most important use of Eq. (20) is for = 0, in 
which case Qi is given by Eq. (15). If W,, is neglected, then Eq. (15) reduces to Qi = 1 and 

Eq. (20) becomes 

0 - r0 

**e 1 - i6 + (1 - ro)/z ’ 
-- 

which clearly has a positive imaginary part, independent of b,. This changes when nonzero 
w,,, is included. 

Figure 1 illustrates some of the above points. From Fig. l(a) we see that including 
nonzero a,, has some quantitative effects on the real part of the frequency, Or, but the 

genera1 character is unchanged. On the other hand, we see from Fig. l(b) that the growth 
rate, y ,  is qualitatively changed by including nonzero w,,: damping occurs at large poloidal 

mode number. Also note that there is a scale change between Figs l(a) and l(b), and that 
y <e a,. 

The qualitative change produced by nonzero w,, is fairly simple to understand. 
Because W,, and W,, both increase with poloidal mode number, W/W,, and O/W,, both 

decrease with increasing poloidal mode number (monotonically). This causes the 
exponential associated with magnetic resonance damping in Eq. (16), exp(-o/m,,), to 

become larger with increasing poloidal mode number so that drift resonance damping is 
more effective at large poloidal mode number. 

2.3. Sheared Magnetic Field 
We now allow for sheared magnetic fields so that the parallel wave number varies in 

the radial, or x-direction, as given below: 

As discussed in the introduction, the shear length, L,, is assumed so large that we can neglect 
spatial derivatives of the equilibrium quantities compared to derivatives of the fluctuating 
quantities. A consequence of this is that we can regard the differential operator, 
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as commuting with 4,. This allows us to obtain the differential equation for the electrostatic 

potential when shear is present by simply manipulating the local dispersion relation, Eq. (20). 
Thus, 

ro4 = 0 [l+z(l-i6)]Q . 
(0 + zW*,)Qi 

To reduce Eq. (26) to a low-order differential equation we use the Ross-Mahajan 
approximation:29-30 

Then Eq. (26) becomes 

with the pseudo-potential, V ,  given by 

Equation (28), together with the boundary conditions that vanish as X tends to +oO, can be 

solved numerically using standard shooting code techniques. However, it is also useful to 
approximate V and solve Eq. (28) analytically. 

2.4. Harmonic Oscillator Approximation 

Here we expand the pseudo-potential given in Eq. (29) so that Eq. (28) reduces to the 
Schrodinger equation for the harmonic oscillator. The expansion formally assumes x and 4, 
are small. From Eq. (9) we obtain 

with 
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= -A’Z(A’), Ql = --[A’Z”(A’)+ 1 A2Z’(A‘) - A‘Z(A’)] , 
4 

which allows us to write 

vzv,+yx2 
with 

where 

If we define z by 

X = a Z  
with 

then Eq. (28) with Eq. (32) for V becomes 

3+ (a -z”@ = 0 az2 
with 

a=--- v, 
yx  - 

(32) 

(33) 

(36) 

(37) 

Equation (38) is of the same form as the Schrodinger equation for the harmonic oscillator. 
We demand solutions that vanish at 1x1 = = . This imposes the quantization condition 

u=2p+1, p=0,1,2,3 ... , 
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and the solutions are 

Q = ~, , (z )exp(-z~/2)  . 

Inserting Eq. (39) into Eq. (40) yields the radially resolved dispersion relation 

Notice that implicit in this equation is a choice of branch (or sign) for the square root of I(. 
The choice is governed by the fact that the perturbed electrostatic potential, and hence, 
exp(-z2 /2) = exp[-X2/(2a2)] = exp(-I( 112 X 2 /2), should vanish as 1x1 tends to infinity. 

Thus, 

Re( ,I") > 0 

determines the branch of the square root. 
Inserting Eqs. (33) and (34) into Eq. (42) yields the alternate form of the radially 

resolved dispersion relation 
b 

where 
Qeff = a(1+4 

with 

(43) 

(44) 

Notice that Q. (43) is of the same form as the local dispersion relation, Eq. (20). If A = 0, 
then Eqs. (43) and (44) reduce to the local dispersion relation for 4, = 0. The iterative 
technique of solution discussed circa Eq. (20) also works well for Eq. (43). 

The correction in the growth rate produced by nonzero A is due to shear 
stabilization. We can gain some insight into its origin by recalling that arises from 
nonzero Q,. If we note that in the limit of infinite A, Q, and Q, both tend to unity, we see 

from Eq. (14) that Eq. (30) in this limit simply corresponds to the leading terms of the 
asymptotic expansion 
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-@(t) - 1 +- 1 = 1++ 4 x  . 
2t2  w 

As can be seen from Eqs. (30) or (46), A can also be viewed as originating from including 
ion acoustic or thermal corrections. Notice that Eq. (46) does not include the exponentially 
small term associated with Landau damping, -id’2<exp(-~Z). As we shall see in the next 

section, Landau damping has important effects on the eigenfunctions, but not the eigenvalues. 

2.5 Kinetic Eigenvalues and Functions 
Here we present and discuss numerical results for the kinetic model. The focus is on 

motivating aspects of the kinetic model that are incorporated in the fluid model discussed in 
Sec. 111. To do this we compare and contrast results from the three levels of approximation 
presented in the earlier part of this section. 

Figure 2 shows the real and imaginary parts of the frequency vs. mode number for a 
set of parameters appropriate to the core of the TEXT t ~ k a m a k . ~ ~ . ~ ~  These parameters, which 
will be used throughout this paper for the numerical examples (with the exception of Fig. 3) 
are: 

bi=1.283x1O - 4 2  rn 6=1.364~10-~rn ~ = 1  
md0 = 1 / 3 L,/L, = 10.355 C O J ~  = 4.433 x 104m 

(47) 

where Qi is the ion cyclotron frequency; we have chosen to characterize the perpendicular 

wave number in terms of the corresponding poloidal mode number, m. 
From Fig. 2(a), we see that the various levels of approximation all yield 

approximately the same results for the real part of the frequency. From Fig. 2(b) we see that 
the “full Z-function results,” obtained with a shooting code using Eqs. (28) and (29), are 
quite close to those obtained from Eq. (43) for the harmonic oscillator approximation. Thus, 
the harmonic oscillator contains most of the information needed to obtain good 
approximations to the frequency and growth rate. 

The primary difference between the harmonic oscillator and the local dispersion 
relation results is caused by inclusion of shear damping effects in the harmonic oscillator 
approximation. The 
parameters for the case illustrated in Fig. 3 are: 

Figure 3(a) shows a case with less shear to illustrate this point. 
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bi =7.160~10-~rn~ 

w,,/o,, = 1/8 

6 = 3.788 x 109m 

L,/L,, = 25.874 

z = 0.588 
W*,/ni = 4.433 x 

At large poloidal mode number this difference is small, and comparison to Fig. l(b) 
illustrates why it is necessary to include magnetic drift resonance damping effects. On the 
other hand, at small poloidal mode number, the stabilization is caused by shear damping. 

Accordingly, we see that it is important to retain both mechanisms. 
Figure 3(b) shows eigenfunctions as functions of the radial variable, x / p i ,  for the full 

Z-function and for the harmonic oscillator approximation. Notice in Fig. 3(b) that the 
harmonic oscillator approximation can give spurious oscillatory behavior extending to very 
large radial coordinate values. Landau fluid treatments of resistive g-modes6 suggest that one 
can eliminate this spurious behavior by incorporating Landau damping. Anticipating the 
material discussed in the next section, Fig. 3(b) also shows that incorporating Landau effects 
in the fitting procedure eliminates the spurious oscillatory behavior. 

Figures 2 and 3 are for the most unstable modes, which correspond to the radial 
quantum number p = O  in the harmonic oscillator approximation. Higher values of p are 
stable for this set of equilibrium parameters (and for all other examples we have examined). 
The growth rate curves for these higher radial mode numbers are qualitatively similar to that 
for p = 0, but are shifted downward, and the maximum is shifted to the left. 

3. FLUIDMODEL 

In this section we develop a fluid model using techniques that are an extension of 
those previously employed for Landau fluids. To include magnetic drift resonance, the 
detailed approach taken is rather different from that employed in the past.6 Including 
magnetic drift necessitates increasing the number of closure relations and the number of 
closure coefficients to be determined. We have already seen another difference in Sec. 11: the 
plasma response function, Qi, is a function of two variables < and A, whereas it is only a 
function of c if magnetic drift resonance is neglected. In the absence of magnetic drift, 

determining the closure coefficients could be reduced to fitting a ratio of polynomials 
involving the closure coefficients to the plasma dispersion function, Z(c). This fitting to 
Z(c) has some ambiguity: fits can be biased to be better at large or small values of c. 
Accordingly, selecting a fit for Z(c) for any given instability should be done on a case by 

case basis (using, for example, solutions to the local dispersion relation to give guidance in 
the selection). 

In the case at hand we again reduce the problem to fitting a function, Qi(c,a), by a 
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ratio of polynomials. However, to fit the function adequately we make the closure 

coefficients functions of the poloidal mode number, rather than constants. Because the 
number of coefficients is proportional to the number of evolution equations, much better fits 
are allowed without having to increase the number of evolution equations. 

Making the closure coefficients functions of poloidal mode number reduces the 
problem to having to fit Q(1,C) only for the single variable C=m/(&ki,Vn). The 

procedure described here allows one to assure oneself that the fit at small and modest k,, (e.g., 
< 5 1) is in good agreement with the features of the kinetic eigenfunctions described in Sec. 

11. For example, we guarantee the effects associated with the harmonic oscillator 
approximation of Sec. I1 D, by insisting that the approximate fit match the two leading terms 
in 

at finite w d o  or A (not just at zero or infinity’o). 

3.1 Evolution and Closure Equations 

By taking moments of the GKE, Eq. (l), and using Eq. (2), we obtain the continuity and 
parallel momentum balance equations: 

and 

We close the system with the closure relations for the perturbed temperature and parallel heat 
flux. Note that if a,, were zero, we would not need to include a closure relation for the 

parallel heat flux, q,, : 

and 
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3.2. Fluid Response Function 
In preparation for comparison of the kinetic and fluid response functions, we 

combine Eqs. (3 )  and (6) to obtain the kinetic result 

To obtain the equivalent fluid result, we eliminate T/;I from Eqs. (56) and (57) 

where 
4 a, 

Y Y  

and 1 and 
and (59) would be identical. 

are given by Eqs. (11) and (12). Notice that if QA were equal to Q,, Eqs. (58) 

3.3. Determination of Closure Coefficients 
We now determine the closure coefficients by applying various constraints so that we 

will have 

We choose the constraints so that the most important features elucidated in Sec. II will be 
retained in the fluid approximation. The closure coefficients will be regarded as functions of 
the poloidal mode number to facilitate the fit associated with Eq. (62). 

We first focus on fitting aspects of the most unstable modes which correspond to zero 
radial mode number in the harmonic oscillator approximation. We assume that the frequency 
of this mode is known from the kinetic model [e.g., from solving Eqs. (28) and (29) 
numerically with a shooting code]. We denote this frequency by 0,. 
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Since we will first focus on small h,, it is convenient to introduce 

1 2"24,vT 
( 0  

y=-=  

0 b, =.bo . 
0, 

With these definitions, Eq. (30) for the kinetic response function becomes 

1 
Q=4&+-Qly2+... 2 , 

while Eq. (60) for the fluid response function becomes 

I--- ! y 2 a  
h E  

QA 

Matching Eqs. (65) and (66) at y = 0 leads to 

a, =AE-. e, -1 
a 

We next insert Eq. (67) into Eq. (66) and expand as a power series in y2 and then equate the 
coefficient of y2  to that in Eq. (65), yielding 

Substitution of Eqs. (67) and (68) into Eq. (66) yields 
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At this point we have matched the small features of Qi associated with the 

harmonic oscillator approximation of Sec. 11, as can be seen by expanding Eq. (69) through 
y 2 .  This corresponds to matching the large expansion of Qi through <-2 . 

We next impose a constraint that will assure us that Landau damping will be 
incorporated in the fluid approximation, so that the radial extent of the modes, etc. is limited 
by Landau effects. To do this we focus on a value of { of order unity, {.. In contrast to 
previous work,6 we do not focus on small values of < because this corresponds to very large 
x and &I where the eigenfunctions are exponentially small, and hence of little importance. 
We define QF to be the value of Qi at the specific intermediate value of kiI , with w = w,. To 
match QA to Qi at cF, it is convenient to introduce 

If we set y = l/<, in Eq. (69) and insert this expression for QF into Eq. (70) we obtain 

a=s ,  l-- . ( ' E )  

For the results reported in this paper, the numerical value of cF has been obtained from 

which works well in practice. As can be seen from the square root appearing in Eqs. (9) and 
(lo), this is the value where magnetic resonance and Landau effects are comparable. 

At this point, if we allow for W # W,, then 

If w = w,, this reduces to 
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From Eq. (74) we see that we cannot develop any more relations for the closure coefficients if 
w=w,. On the other hand, from Eq. (73) we see that QA has a dependence on 
a, if w # w,, so we can develop a further relation to uniquely determine all the closure 

coefficients if we fit some aspect associated with modes other than the most unstable mode 

( p = O ) .  
To fit aspects of the less unstable modes, it is convenient to rewrite Eq. (60) as 

which simplifies the algebra for obtaining the asymptotic expansion 

This is to be compared to the asymptotic expansion of the kinetic response function 

1 1  a. -1+-+- 
2a 2 ~ 2  * 

(77) 

We choose to match the c-2 terms in Eqs. (76) and (77). One reason for doing this 
is that Eq. (67) already gives an expression for a,, so matching the A? terms .is 

inappropriate. Indeed, the constraint leading to Eq. (67) is simply a better version of what 
would be obtained it we matched the x’ terms in Eqs. (76) and (77) -- albeit for o = o,. It 
is better in the sense that it incorporates magnetic drift resonance damping, which matching 
the xi terms in Eqs.(76) and (77) would not include. The terms proportional to c” in 
Eqs. (76) and (77) correspond to matching Q,, but for W # 0,. This type of matching leads 

to shear damping through coupling to ion sound waves. Thus, it is hoped that by matching 
the r-2 terms in Eqs. (76) and (77), we will help damp any spurious noise that might occur in 
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numerical calculations. Thus we obtain 

Equations (67), (68), (71), and (78) are sufficient to determine the closure 
coefficients. We obtain with the use of Eq. (64) 

1 

and 

=+$) . 

3.4. Linear Fluid Evolution Equations and Results 
From Eqs. (18), (27), (56), and (57) we obtain the fluid evolution equations 

(79) 

The first of these two equations is essentially the ion density evolution equation, although it 
has been cast in a form that resembles the vorticity evolution equation of reduced 
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magnetohydrodynamics (MHD). The second equation is, of course, the parallel momentum 
equation, or the parallel velocity evolution equation. We have chosen to emphasize the ion 

temperature in these equations, because ions are the focus for this paper. However, given the 
linear drive for instability that is provided by trapped electrons, many quantities are more 
naturally or compactly expressed in terms of the sound speed, c: = T, /mi, and the “sound” 

gyroradius, ps = cs I Qi . 
We have solved these equations numerically in the form of an initial value problem. 

The coefficients in Eqs. (80) and (81) were obtained from Eqs. (79), using 0, determined 

from Eqs. (28) and (29) via a shooting code. Because this is a special case for the initial 
value code used to solve the nonlinear extensions of Eqs. (80) and (81), we will defer 
discussing some of these details until Sec. IV. 

We have also solved Eqs. (80) and (81) numerically using a set of closure coefficients 
in which the condition relating to the more stable modes, Eq. (78), was replaced by the 
ad hoc condition bo = 0. With the latter set of coefficients, noise was observed to grow. With 

one proviso, using Eq. (79) cured this problem, indicating the utility of imposing the 
constraint associated with the more stable modes. 

For very large poloidal mode number (e.& 500), noise at large x (or large IC,,) was 

also observed to grow when using Eq. (79) for the coefficients. In an attempt to understand 
this phenomenon, the local dispersion relation was derived from Eqs. (80) and (81) -- a 
relatively simple quadratic equation in the frequency. At large 4, one of the solutions was 
found to be 

and the critical value of the poloidal mode number for the onset of the noise in the numerical 
calculations was observed to correspond to the imaginary part of q becoming positive. We 

associate Eq. (82) with a residual ion acoustic mode which is poorly modeled at these high 
mode numbers. 

In principle one could improve the fluid (and kinetic descriptions) of these ion 
acoustic modes so that they were stable in this extreme limit. However, there are an infinite 
number of such damped modes,S6 so this task could well be very time consuming. Instead we 
have adopted the simpler approach of using coefficients calculated at mmax for all poloidal 

mode numbers above mm. One chooses mm so that the imaginary part of a, is negative. 
For the results reported in this paper, m,, was chosen to occur near the local minimum in 

1 - 
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Figure 4(a) compares two ways of obtaining the fluid model growth rates with the 

kinetic model results obtained using the full Z-function expression given by Eqs. (28) and 
(29). The first way used to determine the fluid model growth rates is to solve Eqs. (80) and 
(81) numerically as an initial value problem. The second way of obtaining the fluid model 
solutions is to replace Qi in Eq. (29) by QA and solve the boundary-value problem with a 
shooting technique. Notice that the agreement between all three curves is good, except for 
poloidal mode number, rn, above m,, = 105. For rn > m,,, the calculation of the 

coefficients was truncated as mentioned in the previous paragraph. 
It will also be noted that there is some difference between the shooting and initial 

value numerical approaches to determining the fluid model growth rates at high poloidal 
mode number, m. We attribute this to the difficulty in using initial value techniques for 
damped modes. These damping rates are difficult to calculate accurately, since a decaying 

mode is strongly influenced by initial conditions and may never form a proper 
eigenfunction. To avoid this, we added a constant growth rate to the evolution equations for 
the damped modes to force an eigenfunction to grow. Then, the damping rate was obtained 
by subtracting this constant from the calculated growth rate. Figure 4(a) shows that this 
works well, until the modes are so heavily damped that the added growth rate strongly 

changes their eigenfunctions. 
The closure coefficients used for the calculations shown in Fig. 4(a) were obtained 

using WE as determined from the full Z-function shooting code. Another more rapid, but 
more approximate, way to obtain W, for use in determining the closure coefficients is from 

the harmonic oscillator approximation dispersion relation, Eq. (43). Figure 4(b) shows a 
comparison of these two fits with the full Z-function results. Clearly both fits are good, but 
the fit using W E  from the full Z-function shooting code is better. We will use this more 
accurate fit throughout the remainder of the paper. 

Finally, a comparison of the full Z-function eigenfunctions, the harmonic oscillator 
approximation eigenfunctions, and those obtained using the fluid techniques of this section, 

are shown in Fig. 3. The comparison is for the equilibrium data set with the smaller shear 
effect (larger shear length). For the equilibrium with the larger shear effect used for the bulk 
of the paper (including the nonlinear calculations of the next section), the agreement between 
all three methods of calculating the eigenfunctions is so close that it is difficult to distinguish 
between them. 

\ 
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4. NONLINEAR CALCULATIONS 

Here we discuss nonlinear calculations using the fluid model. The nonlinear fluid 

evolution equations to be used are 

4 4 144 =-if$ 1 + q a  y - v l p i v , - -  y [ L*iJ Ti 

and 

where the fluctuation E X  B velocity is given by 

and the closure coefficients, ao,q,boyb,, are given by Eqs. (79) as explained in Sec. ID. 

There are two major differences between Eq. (83) and (84) and their linear 

precursors, Eqs. (80) and (81). The first difference is displayed on the left side of Eqs. (83) 

and (84) and represents addition of the advection terms: 

a a  -+---+v,,,-v. & a t  

The terms upon which this operates can be associated with standard fluid terms as follows. If 
we use the small Larmor radius approximation ro E 1 - bi, then 

a2 r,+i=-piv, 2 2  rip: - - ax2 (87) 
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and we associate VL2@ with the vorticity (curl of the E x  B velocity). This term is also 
associated with the polarization drift and is often so labeled in nonlinear contexts. The 
remaining term in Eq. (83) acted on by the operator given in Eq. (86) is proportional to 
1-i6 and arises from the fluctuating density in the electron “i6-model” given by 

Eq. (1 8). The advective term associated with the fluctuating density is often called the EX B 
nonlinearity for historical reasons. In Eq. (84) one sees a standard convective derivative 
operating on the parallel ion velocity. 

The nonlinear terms discussed above lead to small scale length eddies, which can 
trigger numerical instabilities with scale lengths comparable to the radial grid spacing. This 
has led us to introduce the terms proportional to v, and v2 in Eqs. (83) and (84). One 
motivation is that there certainly are such viscous effects occurring in any real plasma, and 
these effects tend to smooth the radial profiles. Another motivation is that such terms are 
known to stabilize this type of numerical instability. l 8  Although the viscosity coefficients 
v1 and vz have been introduced as ad hoc adjustable parameters, we have found that levels 
comparable to neoclassical ones (100 to 200 times the perpendicular viscosity for collisional 
ions) produce numerical stability. 

To determine the linear effect of adding the viscosity to the evolution equations, we 
have taken both analytic and numerical approaches. We have kept the distinction between the 
two coefficients, vl and v2 , to allow us to see which of the two evolution equations is most 

strongly affected by the viscosity. The analytic approach is carried out in two parts, the first 
of which is to analyze the local dispersion relation for k,, = 0. This leads to 

from which one obtains the following approximate change in the growth rate produced by 
the viscosity: 

This increase in damping is the dominant effect at large poloidal mode number where the 
viscosity terms have their largest impact. 

At lower poloidal mode number there is a counterbalancing effect produced by a 
combination of viscosity, shear, and magnetic drift. From Eq. (83) we see that the viscous 
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term changes the coefficient of d2 / dx2 into [r-i - 2iv,by / (W + ZW.,)]/$. When this change 

is traced through the harmonic oscillator approximation analysis of Sec. II, one finds that it 
leads to a real correction to the expression given for A in Eq. (49, which in turn increases 
the real part of the frequency through Eq. (43). The increase in the real part of the 
frequency reduces exp (-m/md,,), the dominant factor in the damping associated with a. 
Thus, there can be a slight decrease in the damping at low poloidal mode number. This effect 

is seen in the numerical calculations discussed later, which involve time-advancing the 

linearized evolution equations: Eqs. (83) and (84) with the advection terms described in 
Eq. (86) switched off. 

4.1. Numerical Calculations 
We now briefly discuss the computer code used to obtain the linear and nonlinear 

results described in the remainder of this section. The three-dimensional (3-D) computer 
code DTEM/GyLa advances the Gyro-Landau fluid equations in time. It was developed 
from an existing code, DTEM, which was used to study the evolution of a single field.'* In 
that case, the system consisted of an evolution equation for the ion density and a single 

closure relation obtained from the parallel velocity evolution by assuming a large ion 
collision frequency. The time-advance was performed in a single step. The present code has 
two advantages over this earlier version. The accuracy and stability of the numerical scheme 
have been improved by the implementation of the two-step advance described in Ref. 18. 
Also, the linear parallel damping produced by two evolution equations with Landau closure is 

much more realistic than ion collisional damping. However, even with the parallel damping 

well-represented in the present model, our experience with nonlinear calculations has been 
that numerical instabilities grow unless the perpendicular damping is enhanced [e.g., terms 
proportional to v, and v2 in Eqs. (83) and (84)]. 

Like its predecessor in Ref. 18, the DTEM/GyLa code uses a sheared slab geometry. 
The straight slab is a local approximation to a torus with major radius 4, centered on minor 
radius r = ro. Within the slab, position is defined by rectangular coordinates related to the 
local toroidal directions: x = r - ro in the direction of equilibrium gradients, y = in the 
direction of the poloidal angle 6, and z = R,,c in the direction of the toroidal angle 6. 
(Here we use the standard symbol for this angle since no confusion should result from using 
the same symbol for the usual argument of the plasma dispersion function.) The x 
coordinate covers a radial interval of size a .  Limits on y and z are chosen to correspond to 

a full cycle of the angular coordinates. 
The fluctuating fields are required to be periodic in the y and z directions, allowing 
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for example. The poloidal and toroidal mode numbers m and n are related to the wave 
numbers, m = kyr0 and n = kZ&. All operations are performed in (m,n)-space, and the 

results are stored in spectral form. Convolutions are calculated directly. The x-dependence 
of the Fourier coefficients is represented on a discrete grid. At the edges of the 
computational box ( x  = +a/2) ,  they are required to go to zero. 

In general, numerical solutions of the linearized equations from the DTEM / GyLa 
code are in good agreement with those obtained analytically. Closure coefficients 
a,, 4 ,bo, bl calculated from the prescription following Eq. (79) produce initial-value 

solutions in excellent agreement with boundary-value solutions obtained via the shooting 
method from the full kinetic, or full 2 model of Fq. (28). Figure 4 compares growth rates in 
the absence of viscosity, while Fig. 5 shows the eigenfunctions. When viscosity is introduced, 
there is a reduction in the growth rate that increases with poloidal mode number m, as shown 
in Fig. 6. This is in qualitative agreement with the local analytic result of Eq. (86), since 
by - m2. The small effect at lower poloidal mode numbers due to interaction of viscosity, 

shear, and magnetic drift is also evident. In all the numerical cases shown, vz = v, . 
The DTEM/GyLa code handles linear equations very well, but it was constructed 

primarily to perform nonlinear calculations with Eqs. (83) and (84). Although the code is 
fully 3-D, we have focused on 2-D (single-helicity) tests of the model. In these cases, the 
magnetic field was chosen so that the resonant surface for the m / n = 3 / 2 helicity was located 
at r = q,. Only Fourier modes of this helicity were retained, and a slab width of a = 120p, 
was used. Equilibrium quantities were specified by their magnitudes and scale lengths at 
r = r,. These were held constant in the slab, except for the equilibrium magnetic field. The 

x-dependence of k,, given in Eq. (24) permits the "twist" of a field line to change, thus 

introducing magnetic shear into the model. (This x-variation also permits three-dimensional 
calculations with multiple rational surfaces, to be reported in a later paper.) 

Quasilinear relaxation of equilibrium profiles was prohibited so that the steady state 
fluctuation level could be studied for a fixed set of equilibrium parameters. A steady state is 

expected when the number of Fourier components is large enough to provide an adequate 
energy sink, and the coupling to the energy source is sufficiently strong. For the current 
parameters, Fig. 6 shows that modes with 30 < rn < 50 are unstable. The maximum m in the 
calculations was chosen to be 288. This provides a large range of linearly stable modes that 
can act as an energy sink. Good coupling between the peak of the source (m - 40) and the 
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sink was guaranteed by keeping every component along the resonant helicity. The total 
number of Fourier components was then 192, counting both (m,n) and (-m,-n). 

Numerical calculations with this mode selection, and 600 radial grid points, reached a 
steady state. All modes were initialized with equal amplitudes and random phases. After a 
transient, the root-mean-square (RMS) fluctuation levels at r = ro settled down around an 
average value, as shown in Fig. 7 for vl /pillTi = 2.5 X lo4. A single-helicity calculation with 

this model requires a large number of Fourier components to produce converged spectra. In 
this case, Fig. 8 shows a moderate fall-off in the spectra at r = 5 (about 1 decade) for 

m > 240. However, for this viscosity, strong nonlinear interactions were confined to a very 
small range in m . As a result, the RMS fluctuation levels depend on the values of the sources 
and sinks since most of the energy remains in the driven and damped modes. 

5. SUMMARY 

In this paper, we have developed a Landau fluid model for dissipative trapped 
electron modes, which incorporates ion magnetic drift, Landau damping, and magnetic shear. 

We have indicated the motivation for choosing the closure relations needed for the Landau 
fluid model and exhibited a nonlinear calculation that was run to saturation. 

While the linear model converges well, the various nonlinearities tend to cascade 
energy to higher wave numbers, creating eddies with very small radial scale lengths. To deal 
with these short scale length eddies, which are outside the scope of the original model, we 
have incorporated ad hoc viscosities. 

For the nonlinear example quoted, the value of vl / p i V ,  corresponds to a neoclassical 

level of viscosity, about 180 times the perpendicular collisional viscosity for ions with the 
present parameters. Promising results have also been obtained by reducing vl /pillTi by a 

factor of 10. The fluctuation levels reach a steady state, and an increase in the Reynolds 
number indicates that strong nonlinear interactions now occupy a significant range in m. On 
the other hand, the spectra are not as well-converged, with only a factor of three fall-off at 
large m. To obtain the best features of both viscosity values, we have introduced a 
coefficient that varies with m. Thus, the viscosity is small at small-to-intermediate m, 
allowing for strong nonlinear interactions, and increases at large m, to ensure a converged 
spectrum. Calculations are being performed to investigate the effects of such a profile. In 
addition, a multiple helicity nonlinear calculation involving many more harmonics than the 
example cited in this paper has been performed and shows most of the same characteristics. 

’ 

Comparisons of the fluid model developed in this paper with particle-in-cell gyro- 
Linear and initial nonlinear calculations are kinetic calculations are in progress.25 
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encouraging. These calculations should serve to further elucidate the applicability of Landau 
fluid techniques. Since the two approaches employ quite different "coarse graining" 
(smoothing of short wavelength noise by ad hoc viscosity in the fluid case and by "finite 
particle size" in the gyro-kinetic approach) it is expected that the sensitivity of saturation 
amplitude, etc. to these effects will be explored. 

Here we should mention that including gradient-B effects requires little modification 
of the formalism presented in this paper. A major difference is that instead of Eq. (6) one 
uses 

and the integral is no longer separable into Q(h,@o(b). The other major difference is that 

there are additional closure coefficients associated with the gradient-B drift. In principle, 
these coefficients might allow one to impose additional constraints. In practice, we have not 
found that the additional coefficients allow any particularly useful additional constraints for 
this type of mode. Accordingly, one can set these additional coefficients to zero and 
calculate ao,qybo, and b, from Eqs. (30), (65), (70), and (79) with the simple replacement 
Q + R / & .  The nonlinear evolution equations, Eqs. (83) and (84), are unchanged, except 
for the fact that different numerical values of a,,a,,bo, and b, are used. 

Finally, we speculate on how the method described in this paper might be extended to 
treat toroidal geometry, because this is a topic of some interest27 and because it illustrates the 
type of considerations necessary when applying or extending Landau fluid models. We note 
that the closure coefficients in this paper are relatively weak functions of the poloidal mode 
number, and that growth rates and frequencies are displayed as functions of the perpendicular 
wave number in Ref. 20. Taken together these observations suggest that one can again 
make the closure coefficients functions of the poloidal mode number, even though the 
eigenfunctions in toroidal geometry consist of a spectrum of poloidal harmonics. 

For nonlinear computations, Dorland38 has advocated comparison of fluid and kinetic 

calculations at the linear level before being allowed to "sit at the table," and it is not very much 
more difficult to obtain the means for calculating the kinetic results before fitting than after. 
Thus, suppose that one has a means for numerically calculating the linearized kinetic 
solutions. By using these numerical solutions one can calculate the analogs of the non- 
adiabatic response functions &Q, and QF in Sec. ID, and calculate quantities such as vd.v@ 
which is the analog of Ud0@ appearing in Eqs. (56) and (57). This would allow one to 

impose the analogs of the three constraints involving the most unstable modes given in Sec. 
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III. Whether it is better to use a single poloidal harmonic in performing these calculations or 
to use averages over the harmonics constituting the eigenfunction in question can only be 
determined by trial and error. For the less unstable modes it may be sufficient to match the 
approximate non-adiabatic response function to r0[l t 1/(2c2)] for large anda, as was 
done in this paper. The four constraints indicated are sufficient to determine the four closure 
coefficients as in this paper. We repeat that these ideas are only a starting point and one 
should anticipate having to deal with unforeseen difficulties. 

While it is probably not a problem in fitting coefficients, the fact that the magnetic 
drift varies with poloidal angle in toroidal geometry should lead to some differences. For the 
slab model discussed in this paper it has been tacitly assumed that the average of O,O, over a 

flux surface was negative (otherwise ideal MHD interchanges would be unstable), which leads 
to the stabilizing resonance between 0 andw,. In toroidal geometry this stabilizing 

resonance will not occur in the bad curvature region, so one might expect that there will be a 
tendency for the mode to concentrate in the bad curvature region. However, such 
concentration will lead to variation along the field lines that will lead to increased Landau 
damping, which will limit the concentrating of the mode in the bad curvature region. A 
crude assessment of these competing effects suggests that for some equilibrium parameters 
the damping of higher poloidal mode numbers could be reduced and the marginal stability 

point moved to higher poloidal mode number. A consequence of this is that it would be 
necessary to retain more poloidal harmonics than would otherwise be the case. Clearly one 
would want to have a more accurate assessment of this possibility before entering into a 

calculation that might be beyond the scope of near term computing resources. 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Real frequency (a) and growth rate (b) versus poloidal mode number, m, from the 
local dispersion relation for 4, = 0. The solid curves include magnetic drift effects, 
while the dashed curves omit them. The important effect is in the growth rate, which 
is stabilized at high rn by magnetic drift. The parameters for this example are given 
in Eq. (47). 

Real frequency (a) and growth rate (b) versus poloidal mode number, rn. The solid 
curves are for the full plasma dispersion function, 2. The open circles are for the 
harmonic oscillator approximation, and are quite close to the full 2 results. For 
reference, we show the local dispersion results of Fig. 1 with the dashed curves. 

Growth rates (a), and eigenfunctions for rn = 15 (b) for the parameter set given by 
Eq. (48). The solid curves are for the full Z results. The open circles are for the 
harmonic oscillator results. In Fig. 3(a) the dashed line is for the local dispersion 
relation, as in Fig. (2), which has stronger shear effects. In Fig. 3(b), the dashed 
curves are for the eigenfunctions associated with the Landau approximation, discussed 
in Sec. III. 

Growth rates versus m. The full Z results are shown with open diamonds in 
Figs. 4(a) and (b). A comparison of shooting and initial value code results for the 
Landau fluid with coefficients obtained from the full Z expression for W, is shown 
in Fig. 4(a). Figure 4(b) shows a comparison of the fit of Fig. 4(a), with that for a set 
of Landau closure coefficients obtained using the harmonic oscillator approximation 
for 0,. 

Eigenfunctions versus the radial coordinate for the parameters given in Eq. (47) for 
m=15.  The initial value and shooting codes for the Landau fluid model both 
produce eigenfunctions that are virtually indistinguishable from the full 2 
eigenfunction. 
Growth rate versus poloidal mode number, rn. The open diamonds are for zero 
viscosity, while the solid circles are for vl /pillTi = 2.5 X lo4. The effect of finite 
viscosity is in reasonable agreement with the analytic treatment given in the text. 

Fluctuating electrostatic potential (solid) and parallel velocity (dashed) magnitudes 
versus time for the parameters given in Eq. (47) and vl / p i h i  = 2.5 x lo4. The 

calculation goes well past the initial transient (SLit < 2 X lo4) and into an approximate 
saturated state. 

Fluctuating potential (solid) and parallel velocity (dashed) square magnitudes versus 
poloidal mode number at the rational surface averaged over time 
(6.0 x lo4 5 SLit I 1.0 x lo’). 
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