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Language Interocerability for High-Performance 
Parallel Scientific Components 

Noah Elliott, Scott Kohn, Brent Smolinski 

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 
Livermore, CA. 

Abstract. With the increasing complexity and interdisciplinary nature 
of scientific applications, code reuse is becoming increasingly important 
in scientific computing. One method for facilitating code reuse is the 
use of components technologies [16, 17, 91, which have been used widely 
in industry. However, components have only recently worked their way 
into scientific computing [2, 1, 11, 181. Language interoperability is an 
important underlying technology for these component architectures. In 
this paper, we present an approach to language interoperability for a 
high-performance parallel, component architecture being developed by 
the Common Component Architecture (CCA) group.’ Our approach is 
based on Interface Definition Language (IDL) techniques[6]. We have 
developed a Scientific Interface Definition Language (SIDL), as well as 
bindings to C and Fortran. We have also developed a SIDL compiler and 
run-time library support for reference counting, reflection, object man- 
agement, and exception handling (Babel). Resuits from using Babel to 
call a standard numerical solver library (written in C) from C and Fortran 
show that the cost of using Babel is minimal, where as the savings in de- 
velopment time and the benefits of object-oriented development support 
for C and Fortran far outweigh the costs. 

1 Introduction 

Component technologies and component programming methodologies are be- 
ginning to work their way into the scientific community [2, 1, 11, 181 in the 
hopes of facilitating code reuse. One group developing a component architecture 
for high-performance, parallel computing is the Common Component Architec- 
ture group. An integral part to this component architecture is a mechanism for 
language interoperability. All components that operate within a component ar- 
chitecture should adhere to a standard behavior, which includes being able to 
easily interoperate with software written in other languages. With the prolifer- 
ation of languages used for numerical simulation in recent years, like C, C++, 
Fortran 90, Fortran 77, Java, and Python, language interoperability can be a 
huge barrier to developing components, as well as developing reusable scientific 
applications and libraries. 

i The CCA group consists of representatives from DOE laboratories and academia 
working towards the specification of a component architecture for high-performance 
scientific computing 



Getting the many languages used in scientific computing to interoperate can 
be a difficult problem for developers. For both component and library devel- 
opers, the choice of implementation language may severely limit the reuse of 
their software. Without language interoperability, users of components may be 
required to adopt the language of the component for future applica,tions devel- 
opment, even though better alternatives may exist. If language interoperability 
is desired, component developers and users would be forced to write “glue” code 
that mediates data representations and calling mechanisms between languages. 
However, this approach is labor-intensive and in many cases does not provide 
seamless language integration across the various calling languages. Fortran 90 
is a particular challenge for language interoperability, since Fortran 90 calling 
conventions vary widely from compiler to compiler. 

1 .l Pairwise Approaches 

There have been attempts at automatically generating glue code to support calls 
among a small set of targeted languages. For example, the SWIG package [3] 
reads C and C-l+ header files and generates glue code so that these routines can 
be called from scripting languages such as Python. Pyffle [19] is similar to SWIG 
except that it provides seamless integration of Python and CM-. The problem 
with these approaches is that they either don’t provide two-way interoperability 
between the scripting language and the ta,rget language, or all calls between 
languages must occur through the scripting environment, which makes them 
inappropriate for a high-performance component architecture. For instance, if 
a simulation package written in C wanted to call a numerical solver package 
written in Fortran 77 the package would have to make the call through the 
scripting environment. This would be much too inefficient for general use in 
scientific computing. These methods are not general enough to support a high- 
performance component architecture. 

Foreign invocation libraries, such as Java Native Interface [14], have been 
used to handle interoperability between two targeted languages. For instance, the 
Java Native Interface defines a set of library routines that enables Java code to 
interoperate with applications and libraries written in C and C-l--t. The problem 
with this type of approach is that given N languages, 0(N2) different software 
packages would be needed to get all the languages to interoperate. Again, this 
is not general enough to support a high-performance component architecture. 

1.2 IDL Approach 

One interoperability mechanism used successfully by the distributed systems and 
components community [16, 13, 17, 201 is based on the concept of an Interface 
Definition Language or IDL. The IDL is a new “language” that describes the call- 
ing interfaces to software packages written in standard programming languages 
such as C, Fortran, or Java. Given an IDL description of the interface, IDL 
compilers automatically generate the glue code necessary to call that software 
component from other programming languages. 



This approach shows promise, however, current IDL implementations are not 
sufficient for specifying interfaces to single-program multiple-data (SPMD) type 
of components. First, standard IDLs such as those defined by CORBA and COM 
do not include basic scientific computing data types such as complex numbers or 
block style dynamic multidimensional arrays. Second, all of these approaches do 
not provide support for high-performance same address space function calls for 
all the programming languages needed in scientific computing. Our goal was to 
make the overhead of calls through the SIDL about as expensive as the invocation 
of a C++ virtual function. Third, some of these approaches don’t have support 
for true multiple inheritance (e.g. COM does not support multiple inheritance 
and implementation inheritance is done with composition or aggregation, which 
can be computationally expensive or difficult to implement), and those that 
do have support use a limited object model (e.g. CORBA does not support 
method overriding and their implementation of multiple inheritance is prone to 
method name collisions). It is important that an IDL supports true multiple 
inheritance to allow specification of standards for numerical library interfaces, 
like the Equation Solver Interface (ESI) specification [lo]. 

We have used an IDL approach for handling language interoperability in a 
scientific computing environment. We have developed a Scientific IDL (SIDL) as 
well as a run-time environment (Babel) that implements bindings to SIDL and 
provides support necessary for a component architecture, like reflection . Cur- 
rently SIDL has bindings to C and Fortran 77. Babel implements those bindings 
on Solaris and AIX, with plans to port them to most major platforms. Prelimi- 
nary efforts have shown that SIDL is expressive enough for scientific computing 
and that the binding implementations are fast. 

This paper is organized as follows. Section 2 describes the features of SIDL 
that are necessary to support high-performance parallel computing. Section 3 
describes the bindings of SIDL to C and Fortran 77, as well as Babel run-time 
environment, which includes a SIDL compiler and library support. Section 4 gives 
the results from wrapping a standard solver library with Babel and calling it 
from both C and Fortran. Finally, we conclude in Section 5 with an analysis of 
the lessons learned while wrapping hype and identification of future research 
and additions to Babel. 

2 Scientific Interface Definition Language 

For an IDL approach to work in the scientific domain, the IDL must be suffi- 
ciently expressive to represent the abstractions and data types common in scien- 
tific computing, such as dynamic multidimensional arrays and complex numbers. 
Additionally, the IDL must have an object model that supports true multiple in- 
heritance. This is necessary for satisfying the CCA component architecture spec- 
ification as well as interface standardization efforts like those being implemented 
by the ESI. The IDL should also provide error handling mechanisms which are 
robust and efficient. Unfortunately, no standard IDL currently exists that sup- 
ports all of these, since most IDLs have been designed for operating systems [7,8] 



or for distributed client-server computing in the business domain [13, 17, 201. 
However, SIDL does borrow heavily from the CORBA IDL [17] and the Java 
programming language [12]. Some of the features SIDL provides are an object 
model similar to Java, language constructs necessary for scientific computing 
like complex numbers and dynamic multi-dimensional arrays, and an error han- 
dling mechanism that is a cross between Java and CORBA’s exception handling 
mechanisms. Also, implicit constructs in SIDL allow SIDL implementation en- 
vironments, like Babel, to provide reflection capabilities, which is a necessary 
feature for component architectures. 

2.1 SIDL Object Model 

Currently, interfaces and classes are the only two user defined types in SIDL. SIDL 
adopts the same object model as the Java programming language. The Java 
object model is advantageous because it is well defined, where other models, like 
those used in C++ and CORBA, are not as well defined. For instance, in C++, 
a class can inherit from multiple non-abstract classes. This poses a problem if 
any two or more of the parent classes have method(s) with the same signature. 
Java avoids this problem by only allowing single implementation inheritance and 
multiple interface inheritance. 

All methods are equivalent in semantics to C++ virtual functions. Methods 
can be overridden by child classes, which means the methods in all the parent 
classes and interfaces, which have the same signature as the method in the child 
class, will be defined by that method in the child class. Methods can also be de- 
clared abstract, final, or static. An abstract method is purely declarative and 
has no implementation provided for it. When a method is declared abstract, 
the class also becomes abstract. All methods of interfaces are abstract. A final 
method is one which can not be overridden by child classes. We include the final 
construct to allow implementations of the SIDL bindings to perform optimiza- 
tions by eliminating a lookup in a class’s virtual function table. A static method 
is also final, with additional semantics. Static methods are invoked through a 
class, not an instance of a class. They are the closest thing to “global” methods 
in SIDL. We include the static construct to ease wrapping of non-object oriented 
language libraries and components. 

Every class belongs to a nested package scope. Packages in SIDL are similar 
to namespaces in C++ and packages in Java. The package construct is used to 
create nested SIDL name space scopes. It is the only SIDL construct that creates 
a new name scope. Packages help prevent global naming collisions of classes and 
interfaces. 

2.2 Scientific Data Types 

Most IDL’s, like those used in COM and CORBA, do not support all the types 
needed in scientific computing. For instance, both COM and CORBA’s IDLs 
do not support complex numbers nor block style, dynamic multidimensional 
arrays. CORBA only supports static multidimensional arrays and sequences, 



where COM only support ragged dynamic multidimensional arrays. In addition 
to the standard types like int, char, boo& string, and double, we have included 
dcomplex, fcomplex, and array. dcomplex is a complex number of type double. 
fcomplex is a complex number of type float. The array type has both a type 
specification and a dimensions specification. The type specification tells what 
type of elements the array contains and the dimensions specification tells how 
many dimensions are in the array. A SIDL array is the same as a Fortran block 
style array. 

2.3 Exception Handling 

Component architectures need robust mechanisms for error handling that can 
work across languages. For instance, COM requires all synchronous methods to 
return an error code and all asynchronous methods to return void. The mech- 
anism for COM is not robust and requires a lot of run-time support to gain 
meaningful results, as with an exception mechanism found in Java. CORBA 
uses an exception mechanism where an environment variable is passed as the 
last argument in an argument list in a method and exceptions are set in that 
environment variable. We use a mechanism very similar to CORBA except that 
exceptions are not defined as structures, as they are in CORBA, but rather as 
objects, as they are in Java. All exceptions in SIDL are objects that inherit from 
Throwable. Also, we are exploring using a static environment variable, which 
would allow exceptions to be thrown without explicitly passing an environment 
variable as a method argument. Of course implementations of this model will 
have to be thread safe since they will be used in parallel applications. 

2.4 Reflection 

SIDL has constructs that allow support tools to implement reflection capabilities, 
which is necessary for components (e.g. CCA components). Recall that SIDL’s 
object model is very similar to Java. SIDL also borrows it’s introspection ca- 
pabilities from Java. For instance, like Java, all SIDL objects implicitly inherit 
from Object. Object has a method getclass which returns a Class object. This 
Class object contains information about a particular object’s methods, fields, and 
constructors, which can be queried and invoked at run-time. Every object has a 
Class object associated with it that contains information on it’s methods, fields, 
and constructors. Given this, SIDL implementation tools, like Babel, can provide 
reflection capabilities by implementing SIDL’s introspection specification. 

3 Bindings and Implementation 

This sections discusses the bindings of C and Fortran 77 to SIDL, as well as the 
implementation of those in the Babel run-time environment. This discussion is 
of only the more challenging aspects of developing the bindings and implemen- 
tation. See [15] for a complete specification of SIDL and it’s bindings to C and 
Fortran 77. 



3.1 Bindings to C and Fortran 77 

Mapping SIDL onto C and Fortran 77 posed some interesting challenges. For 
instance, mapping SIDL objects into C and Fortran 77 objects was not alto- 
gether obvious since neither language has object oriented features. Also, map- 
ping complex numbers to C as well as mapping the SIDL array syntax to the two 
languages, posed some challenges as well. Besides these, the mappings of SIDL 
to C and Fortran 77 were fairly straight forward. 

For C, SIDL objects are mapped to opaque structure pointers. In Fortran an 
object is mapped to an integer. Of course a run-time environment that imple- 
ments these bindings will have to provide library support that can translate an 
integer representation of an object to the actual object, in order to get access 
to that object’s data and methods (this is done by the Babel run-time environ- 
ment). A method is invoked by passing the reference to the object, whether it be 
an integer in Fortran or an opaque structure pointer in C, as the first argument 
in the argument list. 

Complex numbers in C are mapped to a structure with two elements. The 
first element is the real part of the number and the second part is the imaginary 
part. Arrays are mapped to structures in C that contain three elements. The first 
element is a single dimensional array that contains the lower bounds for each of 
the dimensions. The second element is the same as the first, except it contains the 
upper bounds. The third element is a pointer to the data. In Fortran, arrays are 
simply mapped to the corresponding array representation in Fortran. Bounds 
for the dimensions need to be specified explicitly in Fortran, since Fortran does 
not have structures. 

3.2 Implementing the Babel Run-Time Environment 

Most of the effort in developing the Babel compiler and run-time was in im- 
plementing the object model, namely: the virtual function tables, the object 
lookup table, reference counting, dynamic type casting, the exception handling 
mechanism, and reflection capabilities. The Babel run-time is implemented in C 
and the compiler is written in Java, however, the “glue” code that is generated 
from the compiler is in C. All of the object support is contained in the “glue” 
code and the run-time library. For instance, every object has a skeleton associ- 
ated with it. The skeleton contains the implementation of the object, including 
the virtual function table (which is implemented like a static C++ virtual func- 
tion table), constructors, destructors, support for dynamic type casting, etc... 
The run-time library contains support for reference counting, the object lookup 
mechanisms (which is necessary for supporting objects in Fortran), and the 
exception handling mechanism. The reflection capability is supported through 
both the skeleton and the run-time library. 

One of the goals while developing Babel was to make function calls made 
through Babel fast. We were able to limit C to C function calls to one extra 
function call and one lookup. Calls between C and Fortran 77 required two 
extra function calls and one lookup, and Fortran 77 to Fortran 77 calls require 



three extra function calls and one lookup. The extra function calls between 
languages are needed to translate between the different signatures. Babel does 
take advantage of the static and final constructs in SIDL by eliminating a 
function table lookup to functions of those types. 

4 Results from Wrapping hypre 

As a test case, we used Babel to create new interfaces for the hypre semicoursen- 
ing mulitigrid solver (SMG) [4], a 1 inear solver that is part of the hypre precon- 
ditioner library [5]. hypre is a library of parallel solvers for large, sparse linear 
systems being developed at Lawrence Livermore National Laboratory’s Center 
for Applied Scientific Computing. The library currently consists of over 30,000 
lines of C code, and it has 94 encapsulated user-interface functions. To test Babel 
we created a new interface (hypre is written in C, with a C interface provided 
by the authors) for both C and Fortran 77 using Babel, and ran similar test 
drivers using the two Babel generated interfaces and the original C interface 
already provided by the library. We then compared the results from all three. 

Compiler Details 

library user implementation 

Fig. 1. Wrapping hypre 

Wrapping hypre with Babel took three steps. The first step was to write a 
description of the existing interface in SIDL, which was done by two people, 
one who was familiar with SIDL and another who was familiar with the hypre 
library. The second step was to run the Babel compiler with the interface de- 
scription as input to create all of the “glue-code” for each class (see Fig. 1). 
Since the signatures for the library functions were different from those in the 
virtual function tables, we also had to manually write the calls to the hypre 
functions into the library skeleton generated by the Babel compiler. This was a 
somewhat mundane task, but it required only one line of code per function, and 
it needed to be done only once, as the same skeleton code was used for both the 
C and Fortran (as well as for all other language bindings). Manually editing of 



the skeleton code would not be necessary if the library used naming conventions 
and calling sequences that complied with the Babel specification (e.g., prepend 
every function call with an impl-). Once the function calls were manually added, 
the new C interface was complete, and then the Fortran interface was created 
almost instantly by running the compiler once more with different options to 
create the Fortran stub code. The final step was to compile and link the drivers 
with the skeletons, stubs, and the hypre library. 

We rewrote an existing SMG test driver to test the efficacy of the new in- 
terfaces. The driver uses SMG to solve Laplace’s equation on a 3-D rectangular 
domain with a 7-point stencil. First, all calls in the driver to the hypre library 
were replaced with the new C interfaces that Babel created. Then we wrote a 
new Fortran driver that sets up exactly the same problem using the same algo- 
rithm and calls the same hypre functions via the new Fortran interface. Fig. 2 
shows a portion of the hypre interface written in SIDL and 3 shows portions of 
both the C and Fortran drivers that call the hypre library through Babel. 

package hypre C 
class stencil I 

stencil NeuStencil(in int dim, in int size); 
int SetStencilElement(in int index, inout ar+ay<int> offset); 

1; 
class grid C 

grid NewCrid(in mpi-corn corn, in int dimension); 
int SetGridExtents(inout array<int> ilower, inout array<int> iupper); 

); 
class vector c 

vector NewVectorCin mpi-corn corn, in grid g, in stencil s); 
int SetVectorBoxValues(inout array<int> ilower, 

inout array<int> iupper, inout array<double> values); 

class matrix C /* matrix member functions omitted in this figure */ 1; 
class smg~solver ( 

int Setup(inout matrix A, inout vector b, inout vector x); 
int Solve(inout matrix A, inout vector b, inout vector x); 

Fig. 2. SIDL for hypre. 

Both new drivers ran with no change in numerical results. We compared the 
efficiency of the new C and Fortran drivers to the original C driver. The drivers 
that used the Babel wrappers solved large problems both sequentially and in 
parallel on 216 processors, with no noticeable effect (less than 1%) on the speed 
of execution. The overhead added by Babel is negligible when compared to the 
overhead of the numerical kernel of the library. 

In all, this took less than an afternoon to wrap and run hypre on both Solaris 
and AIX using both a C and Fortran 77 driver. To put this in perspective, there 
was an effort by the hypre team to wrap hypre by hand, making it callable from 



C Test Code Fortran 77 Test Code 

hypre-vector b, x; 
hypre-matrix A; 
hypre-smg-solver solver; 
hypre-stencil s; 

integer b, x 
integer A 
integer solver 
integer s 

b = hypre_vector_NewVector(com, grid, s); b = hypre_vector_NewVector(com, grid, s) 

x = hypre_vector_NewVector(com, grid, s); x = hypre_vector_NewVector(com, grid, s) 
. 

A = hypre_matrix_NewMatrix(com, grid, s); A = hypre_matrix_NewMatrix(com, grid, s) 
. 

solver = hypre_smg_solver_nevO; 
hypre_smg_solver_SetMaxItr(solver, 10); 

solver = hypre_smg_solver_newO 
hypre_smg_solver_SetMaxItr(solver, 10) 

hypre_smg_solver_Solve(solver, &A, Lb, Sx); hyp+e_smg_solver_Solve(solver, A, b, x) 
hypre_smg_solver_Finalize(solver); hypre_smg_solver_Finalize(solver) 

Fig. 3. Sample test code. 

Fortran on a Solaris platform, that took over one week for one person to do. 
Even after they finished wrapping it, they had to redo the effort when they 
ported it to another platform. 

5 Lessons Learned and Future Work 

Our experience using Babel to create new interfaces for h?lpre shows that Babel 
is an effective tool to support language interoperability for high-performance, 
parallel scientific computing. While it is not difficult to use for an existing library 
such as hypre, Babel can be easier to use if a library, or component, is designed 
and written from the beginning with Babel naming conventions in mind. Calls 
to the library, or component, will also be faster, if these conventions are followed, 
since there will be one less function call. Calls through Babel can be streamlined 
even further by declaring methods final or static, where possible. This will 
eliminate a virtual function table lookup. Also, developers who use non-object 
oriented languages can take advantage of the object support that Babel provides. 

In the future we will develop bindings for C++, Java, Fortran 90, and Python 
and implement those bindings in Babel. We will also explore various component 
composition and introspection models for scientific computing, in conjunction 
with the CCA, and develop the appropriate library implementations in Babel 
to support them. 
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