Beam dynamics studies in a high-brightness photo-injector

PDF Version Also Available for Download.

Description

A high-brightness photo-injector has been developed at Fermilab in collaboration with the TTF project at DESY. Two systems have been commissioned, one at DESY and one at Fermilab. The injector [1] consists of a 1.625-cell cavity RF gun, a superconducting niobium cavity (both 1.3 GHz), and a magnetic chicane. The gun is designed for an electric field of up to 50 MV/m on the cathode. Emittance compensation solenoids surround the gun to correct the linear space charge emittance growth. A high quantum efficiency Cs{sub 2}Te photocathode located in the first half-cell produces electrons when illuminated by 263 nm wavelength light ... continued below

Physical Description

58 Kilobytes pages

Creation Information

al., Jean-Paul Carneiro et October 25, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A high-brightness photo-injector has been developed at Fermilab in collaboration with the TTF project at DESY. Two systems have been commissioned, one at DESY and one at Fermilab. The injector [1] consists of a 1.625-cell cavity RF gun, a superconducting niobium cavity (both 1.3 GHz), and a magnetic chicane. The gun is designed for an electric field of up to 50 MV/m on the cathode. Emittance compensation solenoids surround the gun to correct the linear space charge emittance growth. A high quantum efficiency Cs{sub 2}Te photocathode located in the first half-cell produces electrons when illuminated by 263 nm wavelength light (fourth harmonic of the Nd:YLF laser). The laser [2] was designed to produce a train of up to 800 equal amplitude, 10 {micro}J UV pulses spaced by 1 {micro}s at 1 Hz repetition rate. The laser pulse length is adjustable between 1 and 20 ps FWHM. The superconducting cavity is a 9-cell Nb structure fabricated by industry for TTF. It was tested with RF at DESY before being sent to Fermilab. At present, the cavity is operated at {approx}11 MeV/m. Beam measurements with the injector at Fermilab are in progress. Preliminary results for emittance and bunch length will be discussed in this paper. Future plans for the machine will also be described.

Physical Description

58 Kilobytes pages

Source

  • 1999 Free Electron Laser Conference, Hamburg (DE), 08/23/1999--08/27/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: FERMILAB-Conf-99-271
  • Grant Number: AC02-76CH03000
  • Office of Scientific & Technical Information Report Number: 14016
  • Archival Resource Key: ark:/67531/metadc621047

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 25, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 1, 2016, 3:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

al., Jean-Paul Carneiro et. Beam dynamics studies in a high-brightness photo-injector, article, October 25, 1999; Batavia, Illinois. (digital.library.unt.edu/ark:/67531/metadc621047/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.