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Abstract 

W c  present in this 
a Dnt~r Ptirnllcl Vcrsion 

coliimns of thc matrix X. The algorithm is cssclltially 
that given for the is60 Intd in [2], although a few mod- 
jficatioriti wcre required in the porting to CMFortran, 
and in the! &ptalion to the CMSST. (Coiiticction ME+ 
chine Scientific Softwarc I.ilrury) library routines. 

We. rccdl Lricfly the algorithm. Lcb tiic rriulticev 
A and B be decompmcd by Qlt factorizatiiw with 

paper sonic timing rctlults for 
of a Kronecker Prodiict. 1,ciL 

Squares ( M a  on ~.hc Ci~~~acctiori Machine 5 

column pivoting so t.hat. 

and 

wliere QA and CJs arc tnx  m and n x n real ortliog- 
0x181 matrices rmrpcctivcly, RA and RJI arc p x y nud 
g x q real upper triangular matrices respcctivcly, u d  
PA and PB are p x p oiid y x p permutation IxiaLrices 

TliiE rcscarch WRR mpported ultdcr Contract No. 
1030N0014-011 with LOR Alaiuos National Laboratory. 

1 Introduction 

TI) Illis ptqxr we describe thc: irnplc~ricntation of 
8x1 algoritlini for computing the solution of thc K r u  
iiccker Product lcast sqiinrc~ problcm 

( A @ P ) ; r : = t  (1) 

rcxiy ectivel y. 
Letting 

QA = ( O A ~ , Q A ~ ) ,  Qn = (Qni.(cl~1) ( 5 )  

where QA, is t.hc matrix oi the first p colur~irta of QA 
and QHI ig thc matrix of the first y columns of Qu, 
and putting 

or, cqiiivrrlcntly, 

(It-x */13’)=T, (2) 
with x = vec(X), and t = vcc(‘l’), in the fu l l  - rartk 
case in Data Parallel CMFortrm 011 thc CAnnection 
Machine 5. Tlera A and B are real malrictw of dinien- 
siom in x p, m > y, and n x q ,  n > qI with rank(A) 
= 1’ and rank(D) = q. Also, X is q x pI T is $1 x i1iI 
and vec(X) denot.tx the vector consisting of LJic stacked 

t;Jic lcwl squares problem (2) may hc writlm in the: 
equivalent form 

(7) 
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wlrcrc. O('), wid (I(') are zero matricw of order 
ti - q x p, q x rrc - p, aiid n - q x m - p rcspectively. 
11, followfi t h t  tlic lcrurt tlquarw tlolutiou of (8) or (2) 
is the exact fichif.ioii of tdic no~irringiilar tlytlkm - 

(9) 

or, equivalcntly, 

With 
H = Q ; ~  ~ T * Q A ~  (11) 

we have tlrc two stcp procctlurc for cornputing Y from 
I I :  Lcl 

Z = R B ' Y  (13) 

tiiid wri le  3 - lti = H in transpmd form w 

R~ zT = I I ~ .  

Thc backeolvcrr indicated in eqiiatkm (13) and 
(12) are perfectly pardlcl sincc thcy can be performed 
indepeiidently to gciicratc the columns of ZT,  Y from 
the columns of thc 'tight hand sides' HT, 8 rcspcc- 
tively. The Imic algorillirn i H  llrcrcfore as follows: 

Step 1 : C o r r i ~ r u t e  the fJR factorization of A. 
Step 2: Compiitc t . 1 ~  Qll kctorization of R.  
Step 3: Form the riglit. hand sidc vectors for the 

bnck~olvclr in equation (15) by computing 1Jic rrintrix 
pTOdUCt 

HT = Qzl -T7' - Q R I .  (14) 

Step 4: Perform thc backeolva in equation (13) 
by distributing t,hc columrie of IIT 'equally' across t.hc 
proccssore. 

Step 5: Cornyulc the transpose of Zr to gct the 
right hand side vectors Z for eqiiation (12). 

Slep 6: Perform the hackeolvctr in equation (12) 
by distributing &he cnhmne of 2 'cqually' across t.hc 

Step 7: Corriyuk the least sqnarm solutiori iu 
1WOCCRROrH. 

rnalrix form iising cqiiatioa (G),viz. 

Step 8: Finally, the residiid is computcd froni (2) 
as the 1"robeniiis norm of 

2 Implementation of Least Squnrcs AI- 
gorithm in CMFortran 

The tlircc! maiii paradigms currently availnhlc for 
parallcl prograrnrriing on liigh Perforinannce Coinpit- 
cre are (i) trkared-memory (ii) cxplicit mmogc-pHxtling 
and (iii) data paralld. On ti given machine that 
paradigm ~irtly exist either in hardwart? or softwarc, or 
a combination. On thc Comcction Machine 5 the data 
parallel snd mwagep8ssing pardigme arc available, 
but tlic ehared- Iriexnory p a r a d i p  ifi not. Tlic above 
drscribed algorithm wltfi implcmcntcd on the Coririe~ 
tion Machine 5 using CMIzortruii iri tlic (global) data 
parallel paradigm. 

All steps of the algorithrri wcrc iiriplerriented us- 
ing standard CMSST. (Cunnection Machine Schit.ifrc 
Softwtlre Library) routines from [3], except for the 
backsolvcs in ~tcps 4 arid 6, which were eodcd cxplic- 
itly in data par:allctl CMPorlran. The reason for t h i s  
is that+ in !.he CMSSL Library (see [3], Chap. 5) tllc 
gen-111- factor and ycrr--lu--eoluc? roiit.ines arc orgir- 
nized w LL coupled set for performing Gauseiali elim- 
ination, and one cannot make use of the bscksolvci 
without first performing thc LU dccorriposition, evcn 
for an upper triangular input tnslrix. At. this writing 
wc Iiavc bccn tidviwcl that Thinking M;rc.)tinccl Corpo 
rbtioxi does not hnvc plan8 to produce a stand-alonc 
bncksotvcr for upper triangular matricm in future re- 
1cat.w vf the CMSST. Library. 

Each slep of the above algorithm was timed scp- 
aratcly. lIcrc we describe which CMSSL routines 
were used for thrm timiiyrr. lpor steps 1 and 2 the 
Qll-factorizat.iot,a in (3) and ( 4 )  were computed UB 

ing CMSSI, routine gen - gr - factor; the times r e  
ported include tlic timw to recover thc? 9, R arid P- 
matrices in full storage mode using the CMSSI. roii- 
tiiics gcn - qr - apply - q. gcn - qr - get - v,  aiid 
gen - gr - apply - y. For step 3 t.hc right harid side 
matrix H wtrtr corripubd using (11) and CMSSL rou- 
tiiicrr rrrulrnul abd tmruposc. For step 5 the transpotrc 
of BT was compirtcd using CMSSL roiit.iiic ~ I Y I ~ M ~ J O ~ ~ .  
For stcp 7 the solution miatrixwm computed using (15) 
and the naalnrtd arid franspae routince. llere the per- 
mutatioii matricccl PA and PB were nwd in full storage 
rriode. The reason for Ihie inenicient computation UB- 
iitg permutation mat r im i N  that tlic CMSSL Library 
roiitincs aarociated with the QR-factorization make 110 
provifiion for direct recovery of thc pivot vector moci- 
at.c.d with l l c  column pivoting k the QIGfact-orization 
of the iiipiit intrtrix. It seems thnt thie is due to t.Rc 
fact that tlic Qn-factorizationa are performed on a 
block cyclic ycririulation of tlic input matrix, so that 
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the pivot vector wociatccl wilh thc input matrix it- 
sdf ncvcr gets gcncrnted. For step 8 lhe residud is 
corripuhl ucriirg (16) ml tlic Frobmius n o m  using 
CMSSL routiim niatnud, ti*nnqiose and miin. - 

Tlic A mid R mhtricefi (and the right hand side 
matrix 3’ yielding known solution X )  were generated 
hi p~rdlc l  on !he CM-6 wiag tbc! raiidcjI(1 n111111)cr ~ C J I -  
erator RNG, hiit. this preliminary step w.m not timed. 

In the Data PsraIlel paradigm the smallest par- 
tition eize which can be used on the CM5 at 1,- 
Alainoe Nntioiial Laborntory is 32. Accordingly, with 
4 VUs/node, a 32-node partition functions as a SJMD 
iiiachiiia with 128 procc%liing clcrriente all oycrtrliiig in 
parallel. 

3 Backsolve Coding 

We describe here the tnanncr in wliicli lhe back- 
ttolvc coding for steps 4 and 6 was accomylitihcd. Since 
the parallelism in t h c  bnck.ksolvirig conrrbts of doing 
equal numbers of hackmlvw 0x1 each processing cl- 
~ I J ~ C I I I  (number processing clctnciih = 4*NPHOCS, 
whcrc NPltOCS is the  nombcr of yrocwors in the 
partition) wi: rritrdc use of a “serial” axifi m o w  the 
rows of the HT and 2 mstricct, and a  new^" axis 
across their columns. This hyyoul forces all camp" 
iiculs of each riglit hand cridc vector to reside on a 
single VU, and takcs care of thc load halancing by 
placing NINPROCS beckwlvcrr 0x1 each VU; t.hc load 
balancing is thcrcforc yerfecl when N is divisible by 
N PROCS, while lioine processors will have one more 
backsolve to do when N ie not divisible by IVPROCS. 
’Yhc upper triangiilar matriccrl It* and RE arcl OII thc 
otlicr hwid, front end arrays stored  ti one.dimendonn1 
arrays with a ‘kcrial” I~iyouL directives. lf H ir; tlic ma- 
trix of riglit hand aide vcctore, and Y is Lhe matrix of 
aolul.ion vcc~ore, then the CMFortrrrri cock for the N 
bncksolvw of the upper triangiilar matrix It.4 (or RB) 
ifi follows: 

Code Segiri&il for Thicksolves (gkps 4 Rt. 6): 
CMY$ LAYOUT Y(:SElUAL,:NIM’S) 
CMF$ IAYOUT H(:SERlAl.,:NEWS) 
CMY8 LAYOU‘I’ ‘l’(:NEWS) 
CMFS LAYOUT R(:SU:ILIAL) 

DO 10 I = Nll1 . l  
Y(1,:) =: II(1,:) 
T(:) = 0.0 
110 K = I + l ,  N 
T(:) = R(JBEG+K)*Y(K,:) + T(;) 
END0 
Y(1,:) = (Y(1,:) - T(:))/R(JBEC:+I) 

JMCG = index of 1-I) array R. such that C 
R(JBEG+l) = (I,l)-element of EA 

c 

10 (hntiniia 

4 TimingData 

Timing data w w  collected only in the  cam of 
squarc iiiatrica A arid U of order N x N (N = rri = 
p = n = q). For compariwn with the actual timing 
d a h  we list in Tsblc 1 the (mid) operation co~ints 
for each ctcp of the algorithm. 

‘l’ahle 1: Operation Courits far N x PI A arid U- 
Matrices 

N 11 Idt QR I 2nd QR I HHS I 1st  nS 

111 ‘lbble 2 we give t.hc CM Busy times in ~ ~ ~ o n r l e  
for each step of tlic algorithm whcn thc ordw iV of 
A and H i s  1024. This run was donc ob n 32-node 
partition; conrcequeritly, 128 Vue WOTL? employed, 80 
tbc nu1nbcr of backmlvefi p c ~  VU done in steps 4 r i n d  
6 was 1024/128 =: 8. For this nin the residual from 
Ihe 1024 x 1024 in8trix in (16) was 

11’1’- (U - X *A’”)llp = 0.000546. 



Tt~Llc 2: CM Busy 'Lime (in wccondfi) Irir 1024 x 1028 
A and U-M&ica 

trnnRp 1 2nd IBS I I'crm I 'Jbral 1 kc& - 11 9Y.UGM I lU98.88M I 16639M 1 - 

NPROCS 11 lst Q L ~  I ~ W I  QR I RHS f i s t  DS 
12.79.3 I 3.959 I 10.838 
rm I ?'oral I Rw 

0,099 11 10.839 I 3.826 I 55.196 I 3.940 

In Tablc 3 the megaflop rate for cadi stcp of thc 
algorithm i R  givcn using the data from l'ablrzr 1 snd 2. 
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