PARALLEL COMPUTATION OF LARGE LEAST SQUARES PROBLEMS INVOLVING KRONECKER PRODUCTS ON THE CONNECTION MACHINE 5

Charles T. Fulton and Limin Wu
Department of Applied Mathernatics
Florida Institute of Technology
Melbourne, Florida 3290]

RECEIVED OCT 131995 OSTI

July 1995

Abstract

We present in this paper some timing results for a Data parallel Version of a Kronecker Product. Jeast Squares Code on ide Connection Machine 5

This research was supported under Contract No. 1030N0014-911 with Los Alamos National laboratory.

1 Introduction

In this paper we describe the implementation of an algorithm for conpuliag the solution of the Ko necker er Product least squares problem

$$
\begin{equation*}
(A \otimes B) x=t \tag{1}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left(B \cdot X \cdot \Lambda^{T}\right)=T, \tag{2}
\end{equation*}
$$

with $x=\operatorname{vec}(X)$, and $t=\operatorname{vcc}(1)$, in the full $-\operatorname{rank}$ case in Data Parallel CMFortran on the Connection Machine 5. Throe A and B are real matrices of dimessigns $m \times p, m>p$, and $n \times q, n>q$, with $\operatorname{rank}(\Lambda)$ $=p$ and $\operatorname{rank}(B)=q$. Also, X is $q \times p_{1} T$ is $n \times m$, and $\operatorname{vec}(\mathbf{X})$ denotes the vector consisting of the stacked
columns of the matrix X . 'The algorithm is csscatially that given for the i860 Intel in [2], although a few modifications wore required in the porting to CMFortran, and in the adaptation to the CMSSI. (Comection Mar chine Scientific Software library) library routines.

We recall briefly the algorithm. Jell the matrices A and B be decomposed by QR factorizations wills column pivoting so that.

$$
A \cdot P_{A}=Q_{A} \cdot\left\{\begin{array}{l}
R_{A} \tag{3}\\
0
\end{array}\right\}
$$

and

$$
B \cdot P_{B}=Q_{B} \cdot\left\{\begin{array}{l}
R_{B} \tag{4}\\
0
\end{array}\right\}
$$

where Q_{A} and Q_{B} arc $m \times m$ and $n \times n$ real orthogoneal matrices respectively, R_{A} and R_{B} are $p \times p$ and $q \times q$ seal upper triangular matrices respectively, and P_{A} and P_{B} are $p \times p$ and $q \times q$ permutation matrices respectively.

Letting

$$
\begin{equation*}
Q_{A}=\left(Q_{A 1}, Q_{A 2}\right), \quad Q_{B}=\left(Q_{B_{1}}, Q_{B_{2}}\right) \tag{5}
\end{equation*}
$$

where $Q_{A 1}$ is the matrix of the first p colum iss of Q_{A} and $Q_{B 3}$ is the matrix of the first q columns of $Q_{B S}$, and putting

$$
\begin{equation*}
Y=P_{B}^{T} \cdot X \cdot P_{A} \tag{0}
\end{equation*}
$$

the least squares problem (2) may be written in the equivalent form

$$
\begin{gather*}
\left\{\begin{array}{cc}
R_{B} \cdot Y \cdot R_{A}^{T} & 0^{(2)} \\
0^{(1)} & O^{(3)}
\end{array}\right\} \tag{7}\\
=\left\{\begin{array}{cc}
Q_{B_{1}}^{T} \cdot T^{\prime} \cdot Q_{A 1} & Q_{H_{1}}^{T} \cdot T^{\prime} \cdot Q_{A 2} \\
Q_{B 2}^{T} \cdot T \cdot Q_{A 1} & Q_{B 2}^{T} \cdot T \cdot Q_{A 2}
\end{array}\right\} \tag{8}
\end{gather*}
$$

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
where $0^{(1)}, O^{(2)}$ ，and $0^{(3)}$ are zero malrices of order $n-q \times j, q \times m-j$ ，and $n-q \times m-p$ respectively． If．follows that the least squarcs solution of（8）or（2） is the exact selution of the nonsingular syblem

$$
\begin{equation*}
R_{A} \cdot Y \cdot R_{A}^{T}=Q_{B 1}^{T} \cdot T \cdot Q_{A 1} \tag{9}
\end{equation*}
$$

or，equivalently，

$$
\begin{equation*}
\left(R_{A} \otimes R_{B}\right) \operatorname{vec}(Y)=\operatorname{vec}\left(Q_{H_{1}}^{\prime \prime} \cdot T^{\prime} \cdot Q_{A 1}\right) . \tag{10}
\end{equation*}
$$

With

$$
\begin{equation*}
H=Q_{B 1}^{T} \cdot T \cdot Q_{A 1} \tag{ll}
\end{equation*}
$$

we have the two strfp procedure for computing Y from II：Let

$$
\begin{equation*}
Z=R_{B} \cdot Y \tag{12}
\end{equation*}
$$

and wrile $Z \cdot R_{A}^{x}=H$ in transposed form us

$$
\begin{equation*}
R_{A} \cdot Z^{T}=I^{T} \tag{13}
\end{equation*}
$$

The backsolves indicaled in equations（13）and （12）are perfectly parallel since they can be performed independently to generate the columns of Z^{T}, Y from the conlumns of the＇riglat hand sides＇$H^{7}, 7$ respec－ tively．The basic algorithm is therefore as follows：

Stop 1：Compute the $Q R$ factorization of A ．
Step 2：Compute the QR factorization of B ．
Slep 3：Form the right．hand side vectors for the backsolves in equation（13）by computing i．fe matrix product

$$
\begin{equation*}
H^{T}=Q_{A 1}^{T} \cdot T^{\gamma} \cdot Q_{B 1} \tag{14}
\end{equation*}
$$

Step 4：Perform the backsolves in equation（13） by distributing the columns of I^{T}＇equally＇across the processors．

Step 5：Compute the transpose of Z^{T} to get the right hand side vectors Z for equation（12）．

Slep 6：Perform the backsolves in equation（12） by distributing the columns of Z＇equally＇across the processors．

Stop 7：Compule the least squares solution in matrix form using equation（6），viz．

$$
\begin{equation*}
X=I_{B} \cdot Y \cdot P_{A}^{T} \tag{15}
\end{equation*}
$$

Step 8：Finally，the residual is romputed from（2） as the Frobenius norm of

$$
\begin{equation*}
T-\left(B \cdot X \cdot A^{T}\right) \tag{16}
\end{equation*}
$$

2 Implementation of Least Squares Al－ gorithm in CMFortran

The three main paradigms currently available for parallel programming on lligh Performance Comput－ crs are（i）Blared－memory（ii）explicit message－pussing and（iii）data parallel．On a given machine these paradigns may exisl either in hardware or software，or a combination．On the Comnection Machine 5 the data parallel and message－passing paradigms are available， but the shared－memory paradigm is not．The above deseribed algorithm was implemented on the Connes－ tion Machine 5 using CMFortran in the（global）data parallel paradigm．

All steps of the algorithern were implemented us－ ing standard CMSSI．（Connection Machine Scientific． Software Library）routines from［3］，except for the backsolves in steps 4 and 0，which were coded explic－ itly in data parallel CMlortran．The reason for this is that in the CMSSL Library（see［3］，Chap．5）the gen－hu－factor and gert－lu－solve routines are orgu－ nized as as coupled sel for performing Gaussian elim－ ination，and one camol make use of the backoolver without first performing the LU decomposition，even for an upper triangular imput matrix．At this writing we have been advised that I＇hinking Machince Corpo－ ration does not have plans to produce a stand－alone backsolver for upper triangular matrices in future re－ leases of the CMSSI．Jilirary．

Each step of the above algorithm was timed sepp－ arately．Here we describe which CMSSL routines were used for these timings．lor steps 1 and 2 the $Q 1$－factorigations in（3）and（4）were computed us－ ing CMSSL，routine gen－qr－factor；the times to ported include the times to recover the Q, R and P－ matrices in full storage mode using the CMSSL，son－ tincs $g \subset n-q r-a p p l y-q, g \subset n-q r-g e t-r$ ，and $g e n-q r$－apply－p ．For step 3 the right hand side matrix H was computed using（11）and CMSSI，rou－ tincs matrnul abd transpose．For step 5 the transpose of Z^{T} was computed using CMSSL，routine transpose． For step 7 the solution matrix was computed using（15） and the matruul and transpose．routincs．Here the per－ mutation matrices I_{A} and P_{B} were used in full storage mode．The reason for this ineflicient computation us－ ing permutation matricess is that the CMSSL．Tibrary rontincs associated with the $Q R$－factorization make no provision for direct recovery of the pivol vector associ－ ated with the column pivoting in the QRfactorization of the input matrix．It seems that this is due to thr fact that the $Q R$－factorizations are performed on a block cyclic permulation of the input matrix，so that
the pivot vector associated wilh the input matrix itself nover gets generated. For slep 8 the residual is compuled using (16) and the Frobenius norm using CMSSL routines matmul, transpose and sum.

The A and B matrices (and the right hand side matrix 7 yielding known solution X) were generated in prostled on the CM- C using the random number generator RNG , hut this preliminary step was not timed.

In the Data Parallel paradigm the smallest partition size which can be used on the CM5 at lons Alarios National Laboratory is 32 . Accordingly, with $1 \mathrm{VUs} /$ node, a 32 -node partition functions as a SIMI) machine with 128 proce:asing elements all operating in parallcl.

3 Backsolve Coding

We describe here the mannor in which the backsolve coding for steps 4 and 6 was accomplishad. Since the parallelism in the beckeolving consists of doing equal numbers of backnolves on each processing elcment (number processing elonents $=4^{*} \mathrm{NPHOCS}$, whicre NPROCS is the number of processurs in the partition) we: mude use of a "serial" axis across the rows of the H^{7} and 2 matrices and a "news" axis across their columns. This layout forces all compo neuls of each right hand side vector to reside on a single $V U$, and takes care of the load halancing by plecing $N / N P R O C S$ backsolves on each VU; the load balancing is thercfore perfect when N is divisible by $N P R O C S$, while some processors will have one more backsolve to do when N is not divisible by $N P R O C S$. The upper triangular matrices $/ l_{A}$ and R_{B} are, on the other hand, front end arrays stored as one-dimensional arrays with a "serial" layoul directives. If H is the matrix of right hand side vectors, and Y is the matrix of solution vectors, then the CMForlern code for the N backsolves of the upper triangular matrix l_{A} (or R_{B}) is ня follows:

Code Segment for Backsolves (sleps 1 \& 6):

CMPS	LAYOU'I' Y(:SERLAL,NLWS)
CMFS	LAYOUT H(SERIAL, C (NFWS)
CMIS	LAYOU'I 'I'(NLWWS)
CMPs	LAYOU'I R(:SLIRAL)

Do $10 \mathrm{I}=\mathrm{N}, 1,1$
$Y(1,:)=11\left(l_{3}\right)$
$\mathrm{I}(:)=0.0$

1) $\mathrm{K}=\mathrm{I}+\mathrm{I}, \mathrm{N}$
$T(:)=R(J B E G+K)^{*} Y(K,:)+T(:)$
ENDO
$\mathrm{Y}(\mathrm{I},:)=(\mathrm{Y}(\mathrm{I},:)-\mathrm{T}(\mathrm{s}) / \mathrm{R}(\mathrm{JBEG}+\mathrm{l})$
C. JBI:G = index of 1-D array R. such that C $\mathrm{R}(\mathrm{JBLG}+1)=(1,1)$-element of R_{A}

10 Continue

4 Timing Data

Timing dala was collected only in the case of square matrice:s A and B of order $N \times N(N=\pi n=$ $p=n=q$). For comparison with the actual timing data we list in Table 1 the (serial) operation counts for each stcp of the algorithm.

Table 1: Operation Counts for $N \times N A$ and B Matrices

N	1 st QR	2nd QR	QR RHS	1 st BS
N	(4/3) $\mathrm{N}^{\text {. }}$	(1/3) ${ }^{\text {N }}$	$\mathrm{N}^{3} 4 N^{3}$	N^{5}
transp	2nd BS	Perm	Total	Res
	N^{3}	$1 N^{3}$	(38/3) N^{4}	$4 \dot{N}^{3}+N^{\text {d }}$

In 'Iable 2 we give the CM Busy times in seconds for each step of the algorithm when the order N of A and B is 1024. This run was done on a 32 -node partition; consequently, 128 VUs were employed, so the mumber of backsolves par VU doue in steps 4 and 6 was $1024 / 128=8$. For this run the residual from the 1024×1024 matrix in (16) was

$$
\left\|r-\left(B \cdot X \cdot A^{T}\right)\right\|_{F^{\prime}}=0.000516 .
$$

Table 2：CM Pusy＇lime（in seconds）for 1024×1021 A and B－Matricces

NPROCS	1st QLL	2nd QR	RHS	1st BS
32	12.742	12.793	3.959	10.838
Lransp	2nd BS	Perm	Thial	Res
0.099	10.839	-3.926	55.196	3.940

In Table 3 the megaflop rate for cach step of the algorithrn is given using the data from T＇ables 1 und 2.

Table 3：Megaflops／sec for $1021 \times 1024 \Lambda$ und B－ Matrices（1M－－ 1 Megallop／sec）

NPROCS	1st QR	2nd QR	RIIS	3st I3S
32	112.30 M	111.91 M	1084.86 M	09.00 M

The effectivencess of the explicit backsolve coding in section 3 can be seen by comparing the measured time in Table 2 to the minimum theoretically feasible lime．Siace one store operation requircs 1.0 microscc－ onds and one operation count（multiplication，addi－ Lion or division）requires 0.5 microseconds the total expected theoretical lime for one backsolve of an $N \times$ N matrix is

$$
1.0\left(N^{2} / 2+2.5 N\right)+0.5 N^{2}=N^{2}+2.5 N \text { micrusecs }
$$

or 1.05 scconde when $N=1024$ ．Accordingly，by the loud balancing implemented in the backsolve coding， thare will be 8 backsolves done on each of 128 VUs ，so the expected minimum time on each VU is $8^{* 1.05}=$ 8.42 seronds．The measured CM Rusy time of 10.84 seconds for each of the two sets of backolves thus rep－ resents 128.7% of the theoretically expected minimum lime．

5 Acknowledgements

We thank Vance Faber for his support of this work．The firat．althor acknowledges support from Contract No．1030N0014－9H and the aceond aullhor acknowledges support from a graduate siudont ri－ search assistantship at Los Alamos National Jabora－ lory．We thank several colleagues from the Computer lReseurch and Applications Division at I．ANT，partic－ ulurly lialph Brickner，Wayne Joubert，Olaf Lubcek， and Tom Mantcuffol for helpful discussions，and sev－ eral consullants from＇I＇hinking Machines Corpora－ tiou，particularly Pablo Tamayo，Daryl Grunau and Ilichard Shapiro for frequent and useful help．

References

［I］D．W．Fameett and C．＇J＇．Fulton，Large Least Squares ${ }^{1}$ rrablects involving Kronecker I＇ronncts，SIAM J．Ma trix Anal．Appl． 15 （1）（1994），219－227．
［2］D．W．Fausett，C．T．Fulton and H．Hashish，Inproved Parallel QR Method for large Jeasil Squares Problems invalving Kronecker Products，Technical Report，Jor pariment of Applied Mathematies，lilorida Insilute of Technology， 1994.
［3］CMSSL for CMFortran，Vers．3．2，＇I＇hinking Mar．hines Corporation，Cambridge，Mass．，April 1994.

 employees，makes any warranty，express or implied，or assumes any legal liability or responsi－ bility for the accuracy，completeness，or usefulness of any information，apparatus，product，or process disclosed，or represents that its use would not infringe privately owned rights．Refer－ ence herein to any specific commercial product，process，or service by trade name，trademark，
manufacturer，or otherwise does not necessarily constitute or imply its endorsement，recom－ mendation，or favoring by the United States Government or any agency thereof．The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof．

