First-principles calculation of atomic structure and electrochemical potential of Li{sub 1+x}V{sub 3}O{sub 8}.

PDF Version Also Available for Download.

Description

Interest in the {gamma}-bronze, Li{sub 1+x}V{sub 3}O{sub g}, as a possible electrode material in rechargeable Li batteries has stimulated several experimental studies on this system. Detailed interpretation of the electrochemical and physical-property measurements is complicated by uncertainties regarding the structural arrangement of Li atoms as a function of x and by a phase transition between two monoclinic structures ({gamma}{sub a}, {gamma}{sub b}) during intercalation. To elucidate the atomic structures and the phase transition, first-principles calculations are performed with the local-density-functional-theory (LDFT) planewave pseudopotential method for both {gamma}{sub a} and {gamma}{sub b}, as a function of lithiation. Calculations for the compositions ... continued below

Physical Description

15 p.

Creation Information

Benedek, R. August 27, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Interest in the {gamma}-bronze, Li{sub 1+x}V{sub 3}O{sub g}, as a possible electrode material in rechargeable Li batteries has stimulated several experimental studies on this system. Detailed interpretation of the electrochemical and physical-property measurements is complicated by uncertainties regarding the structural arrangement of Li atoms as a function of x and by a phase transition between two monoclinic structures ({gamma}{sub a}, {gamma}{sub b}) during intercalation. To elucidate the atomic structures and the phase transition, first-principles calculations are performed with the local-density-functional-theory (LDFT) planewave pseudopotential method for both {gamma}{sub a} and {gamma}{sub b}, as a function of lithiation. Calculations for the compositions 1 + x = 1.5 and 1 + x = 4 confirm that the Li configuration determined in the existing x-ray diffraction structure refinements (at 1 + x = 1.2 and 1 + x = 4 respectively), coincide with the predicted low-energy configurations. Structure predictions were made at intermediate compositions, for which no experimental structure measurement is available. The order in which the tetrahedrally coordinated Li sites are filled at equilibrium as a function of x in {gamma}{sub a}, was predicted. Calculated electrochemical potentials as a function of composition agree well with experimental data.

Physical Description

15 p.

Notes

OSTI as DE00010950

Medium: P; Size: 15 pages

Source

  • 9th International Meeting on Lithium Batteries, Edinburgh (GB), 07/12/1998--07/17/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CMT/CP-97216
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10950
  • Archival Resource Key: ark:/67531/metadc620961

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 27, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 2:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Benedek, R. First-principles calculation of atomic structure and electrochemical potential of Li{sub 1+x}V{sub 3}O{sub 8}., article, August 27, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc620961/: accessed October 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.