ANLIMCS JCP-9 9345

Reproducible Measurements of MPI
Performance Characteristics* oc 7 /

William Gropp and Ewing Lusk

Argonne National Laboratory, Argonne, IL, USA 3 Z’{?g

Abstract. In this paper we describe the difficulties inherent in making
accurate, reproducible measurements of message-passing performance.
We describe some of the mistakes often made in attempting such mea-
surements and the consequences of such mistakes. We describe mpptest,
a suite of performance measurement programs developed at Argonne
National Laboratory, that attempts to avoid such mistakes and obtain
reproducible measures of MPI performance that can be useful to both
MPI implementors and MPI application writers. We include a number
of illustrative examples of its use.

1 Introduction

Everyone wants to measure the performance of their systems, but different
groups have different reasons for doing so:

— Application writers need understanding of the performance profiles of MPI
implementations in order to choose effective algorithms for target computing
environments.

— Evaluators find performance information critical when deciding which ma-
chine to acquire for use by their applications.

— Implementors need to be able to understand the behavior of their own MPI
implementations in order to plan improvements and measure the effects of
improvements made.

All of these communities share a common requirement of their tests: that they
be reproducible. As obvious as this requirement is, it is difficult to satisfy in prac-
tice. Parallelism introduces an element of nondeterminism that must be tightly
controlled. The Unix operating system, together with network hardware and soft-
ware, also introduces sporadic intrusions into the test environment that must be
taken into account. The very portability of MPI suggests that the performance of
the same operations (MPI function calls) can be meaningfully compared among
various parallel machines, even when the calls are implemented in quite differ-
ent ways. In this paper we review the perils of shortcuts frequently taken in

* This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the.
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

T T T TSI IR T T TR T 7
LT AN > TA T s

attempting to acquire reproducible results, and the approach we take to avoid
such perils.

Over the years, the MPICH group has developed a suite of programs that
characterize the performance of a message-passing environment. An example is
the program mpptest that can be used to quickly characterize the performance
of an MPI implementation in a variety of ways. For example, it was used to
quickly measure the performance of a variety of pre-MPI message-passing im-
plementations and to identify message sizes where sharp performance transitions
occurred; see [4], Figures 1 and 3. An example of the use of mpptest in tuning an
MPI implementation is shown in [3]. These programs are portable to any MPI
implementation.

A number of parallel performance tests already exist. Many of these strive
to be benchmarks that produce a “figure of merit” for the system. Our interest
is in the details of the behavior, rather than a few numbers representing the
system. Perhaps the closest project to our work is SKaMPI [7]. The SKaMPI
system provides graphical output detailing the behavior of a wide variety of MPI
functions and includes an adaptive message-length refinement algorithm similar
to that in mpptest. The testing method in SkaMPI is somewhat different from
ours and uses different rules when accepting experiments.

A number of well-known benchmarks are accessible through BenchWeb [1].
The ParkBench Organization provides a variety of codes, including “compact
application benchmarks”. A review of some of the issues in developing a bench-
mark may be found in [2]. Previous PVMMPI meetings have included papers on
performance measurement; see, for example, [5, 6].

‘We hope that the unusual approach taken in mpptest makes it a useful addi-
tion to the collection of performance measurement procedures for MPI programs.
The paper first reviews (Section 2) some of the difficulties of performance per-
formance measurements and characterizations. Section 3 briefly describes the
testing methods and variations, relating the choices to the issues raised in Sec-
tion 2. Section 4 presents a few examples that illustrate the capabilities of our
performance characterization tests.

2 Perils of Performance Measurement

Simple tests can be misleading. As communication software becomes more so-
phisticated (for example, dynamically allocating resources to busy communi-
cation channels), simple tests become less indicative of the performance of a
full application. The following list describes some of the pitfalls in measuring
communication performance, in the form of “mistakes often made.”

1. Forget to establish initial communication link. Some systems dynam-
ically create connections. The first communication between two processes
can take far longer than subsequent communications.

2. Ignore contention with unrelated applications or jobs. A background
file system backup may consume much of the available communication band-
width.

10.

11.

12.

13.

. Ignore nonblocking calls. High-performance kernels often involve non-

blocking operations both for the possibility of communication overlap but,
more important, for the advantage in allowing the system to schedule com-
munications when many processes are communicating. Nonblocking calls are
also important for correct operation of many applications.

Ignore overlap of computation and communication. High-performance
kernels often strive to do this for the advantages both in data transfer and
in latency hiding,.

. Make an apples-to-oranges comparison. Message-passing accomplishes

two effects: the transfer of data and a handshake (synchronization) to in-
dicate that the data are available. Some comparisons of message passing
with remote-memory or shared-memory operations ignore the synchroniza-
tion step.

. Confuse total bandwidth with point-to-point bandwidth. Dedicated,

switched networks have very different performance than shared network fab-
rics.

. Compare CPU time to elapsed time. CPU time may not include any

time that was spent waiting for data to arrive. Knowing the CPU load caused
by a message-passing system is useful information, but only the elapsed time
may be used to measure the time it takes to deliver a message.

. Ignore correctness. Systems that fail for long messages may have an unfair

advantage for short messages.

. Time events that are small relative to the resolution of the clock.

Many timers are not cycle counters; timing a single event may lead to wildly
inaccurate times if the resolution of the clock is close to the time the op-
eration takes. A related error is to try to correct the clock overhead by
subtracting an estimate of the time to call the clock that is computed by
taking the average of the time it takes to call the clock; this will reduce the
apparent time and artificially inflate performance.

Ignore cache effects. Does the data end up in the cache of the receiver?
What if data doesn’t start in the cache of the sender? Does the transfer of
data perturb (e.g., invalidate) the cache?

Use a communication pattern different from the application. Ensur-
ing that a receive is issued before the matching send can make a significant
difference in the performance. Multiple messages between different processes
can also affect performance. Measuring ping-pong messages when the appli-
cation sends head-to-head (as many scientific applications do) can also be
misleading.

Measure with just two processors. Some systems may poll on the num-
ber of possible sources of messages; this can lead to a significant degradation
in performance for real configurations.

Measure with a single communication pattern. No system with a large
number of processors provides a perfect interconnect. The pattern you want
may incur contention. One major system suffers slowdowns when simple
butterfly patterns are used.

The programs described in this paper attempt to avoid these problems; for
each case, we indicate below how we avoid the related problem.

3 Test Methodology

In this section we discuss some of the details of the testing. These are related to
the issues in measuring performance described in Section 2. Our basic assumption
is that in any short measurement, the observed time will be perturbed by some
positive time At and that the distribution of these perturbations is random with
an unknown distribution. (There is one possible negative perturbation caused by
the finite resolution of the clock; this is addressed by taking times much longer
than the clock resolution.)

3.1 Measuring Time: Minimum of Averages

The fundamental rule of testing is that the test should be repeatable; that is,
running the test several times should give, within experimental error, the same
result. It is well known that running the same program can produce very different
results each time it is run.)

The only time that is reproducible is the minimum time of a number of tests.
This is the choice that we make in our testing. By making a number of tests, we
eliminate any misleading results do to initialization of links (issue 1).

Using the minimum is not a perfect choice; in particular, users will see some

sort of average time rather than a minimum time. For this reason, we provide an -

option to record the maximum time observed, as well as the average of the ob-
servations. While these values are not reproducible, they are valuable indicators
of the variation in the measurements.

The next question concerns what the minimums should be taken over. We use
a loop with enough iterations to make the cost of any timer calls inconsequential
by comparison. This eliminates errors related to the clock resolution (issue 9). In
addition, the length of time that the loop runs can be set; this allows the user to
determine the tradeoff between the runtime (cost) of the test and its accuracy.

3.2 Message Lengths

The performance of data movement, whether for message-passing or simple mem-
ory copies, is not a simple function of length. Instead, the performance is likely to
consist of a number of sudden steps as various thresholds are crossed. Sampling
at regular or prespecified data lengths can give misleading results. The mpptest
program can automatically choose message lengths. The rule that mpptest uses
is to attempt to eliminate artifacts in a graph of the output. It does this by com-
puting three times: f(no), f(n1), and f((no + n1)/2), where f(n) is the time to
send n bytes. Then mpptest estimates the error in interpolating between ng and
ny with a straight line by computing the difference between (f(np) + f(n1))/2
and f((no +m1)/2). If this value is larger than a specified threshold (in relative

terms), the interval [ng,n,;] is subdivided into two intervals, and the step is re-
peated. This can continue until 2 minimum separation between message lengths
is reached.

3.3 Scheduling of Tests

The events that cause perturbations in the timing of a program can last many
milliseconds or more. Thus, a simple approach that looks for the minimum of
averages within a short span of time can be confused by a single, long-running
event. As a result, it is important to spread the tests for each message length
over the full time of the characterization run. A sketch of the appropriate mea-
surement loop is shown below:

for (number of repetitions) {
for (message lengths) {
Measure time for this length
if this is the fastest time yet, accept it

3

Note that this approach has the drawback that it doesn’t produce a steady
stream of results; only at the very end of the test are final results available.
However, it comes much closer to what careful researchers already do—run the
test several times and take the best results. This helps address contention with
other applications or jobs (issue 2), though does not solve this problem.

Tests with anomalously high times, relative to surrounding tests, are auto-
matically rerun to determine if those times reflect a property of the communica-
tion system or are the result of a momentary load on the system. This also aids
in producing reproducible results.

Note also that it is important to run a number of cycles of this loop before re-
fining the message intervals. Otherwise, noise in the measurements can generate
unneeded refinements.

3.4 Test Operations

Rather than test only a single operation, such as the usual “ping pong” or round-
trip pattern, our tests provide for a wide variety of tests, selected at run time
through command line arguments. The following list summarizes the available
options and relates them to the issues in Section 2.

Number of processors. Any number of processors can be used. By default,
only two will communicate (this tests for scalability in the message-passing
implementation itself; see issue 12). With the -bisect option, half of the
processors send to the other half, allowing measurement of the bisection
bandwidth of the system (issue 6).

Cache effects. The communication tests may be run using successive bytes in
a large buffer. By selecting the buffer size to be larger than the cache size,
all communication takes place in memory that is not in cache (issue 10).

Communication Patterns. A variety of communication patterns can be spec-
ified for the bisection case, addressing issue 13. In addition, both “ping pong”
and head-to-head communication is available when testing two communicat-
ing processes. More are needed, in particular to make it easier to simulate
an application’s communication pattern (issue 11).

Correctness. Correctness is tested by a separate program, stress. This pro-
gram sends a variety of bit patterns in messages of various sizes, and checks
each bit in the receive message. Running this test, along with the perfor-
mance characterization tests for large message sizes, addresses issue 8.

Communication and computation overlap. A simple test using a fixed mes-
sage length and a variable amount of computation provides a simple mea-
surement of communication/computation overlap, addressing issue 4.

Nonblocking Communication. Nonblocking communication is important; in
many applications, using nonblocking communication routines is the easiest
way to ensure correctness by avoiding problems related to finite buffering.
The performance of nonblocking routines can be different from the that of
the blocking routines. Qur tests include versions for nonblocking routines
(issue 3).

4 Examples

This section shows the capabilities of the mpptest characterization program in
the context of specific examples.

Discontinuous Behavior The need for adaptive message length choice can be seen
in Figure 1(a). This illustrates why the simple latency and bandwidth model is
inappropriate as a measure of performance of a system.

We see the stair-steps illustrating message packet sizes (128 bytes). We also
see the characteristic change in protocol for longer messages. Here it looks like
the protocol changes at 1024 bytes, and that it is too late. The implementation
is not making an optimal decision for the message length at which to switch
methods; slightly better performance could be achieved in the range of 768 to
1024 bytes by using the same method used for longer messages.

Figures 1(c) shows the behavior for nonblocking sends instead of blocking
sends. Note the small but measurable overhead compared with Figure 1(a).

Cache Performance Effects Performance tests often use the same, relatively
small, data arrays as the source and destination of messages. In many applica-
tions, data is moved from main memory, not from cache. Figure 1(b) shows an
example where the performance with data in cache is better than when the data
is not in cache, both in absolute terms and in the trend (lower slope for in-cache
data).

Variation in Performance In an application, the minimum times for an operation
may not be as important as the average or maximum times. Figure 1(d) shows

35

30

a5

30

15

TT I P [T T 7T [v T v [vvry

Blocking Send Blocking not in cache
—] —

LIRS B B B TT T T [T T T T 1 T T T T

LASC S B St e

:
gF....l....l.-.l....I...|I....

20 - -
FEETERCTIT I NS T SAT SR B ST A ST S S ST S S S | TSNS TSN SE RS NETYNT WS S AT ST SE S U INE S S
1] 500 1 1800 2000 500 1 2000 2500

" Stzn gyt TS o)
ze (]
s

Nonblocking send Variation in Blocking Send
v — T

T e e T 70—

500 1000 1500 2000 2500

ize g,vle!)

Fig. 1. Example results generated by mpptest on several platforms. Graph (a) shows
an example of discontinuous performance identified by mpptest. Note the sharp drop
in latency for zero bytes, the significant steps up to 1024 bytes, and the lower slope
beyond 1024 bytes. Graph (b) shows an example of the change in performance between
data in cache (dashed line) and not in cache (solid line). Graph (c) shows the extra cost
of using nonblocking sends. Graph (d) gives an example of the variation in performance
even on a system communicating with shared-memory hardware (see text for details).

the variations in times on a lightly-loaded shared-memory system. This graph
is very interesting in that the minimum (bottom line) and average times (dots)
are close together in most places, but the maximum observed time (top line)
can be quite large. The peaks seem to line up with the transitions; however,
since there are more measurements near the transitions, the correlation may be
an accident. Further testing, particularly with the evenly spaced message sizes,
would be required to determine if those peaks occurred only at the transitions.

5 Conclusion

We have illustrated the difficulty in characterizing performance and have dis-
cussed how the MPICH performance characterization programs can be used
to discover properties of the parallel environment. The software is freely avail-
able from http://www.mcs.anl.gov/mpi/mpich/perftest or
ftp://ftp.mcs.anl.gov/pub/mpi/misc/perftest.tar.gz.

References

1. Benchweb. World Wide Web. http://www.netlib.org/benchweb/.

2. Parkbench Committee. Public international benchmarks for parallel computers.
Scientific Programming, 3(2):101-146, 1994. Report 1.

3. W. Gropp and E. Lusk. A high-performance MPI implementation on a shared-
memory vector supercomputer. Parallel Computing, 22(11):1513-1526, January
1997.

4. W. D. Gropp and E. Lusk. Experiences with the IBM SP1. IBM Systems Journal,
34(2):249-262, 1995.

5. J. Piernas, A. Flores, and J. M. Garcla. Analyzing the performance of MPI in a
cluster of workstations based on fast Ethernet. In Marian Bubak, Jack Dongarra,
and Jerzy Wasniewski, editors, Recent advances in Parallel Virtual Machine and
Message Passing Interface, volume 1332 of Lecture Notes in Computer Science,
pages 17-24. Springer, 1997. 4th European PVM/MPI Users’ Group Meeting.

6. Michael Resch, Holger Berger, and Thomas Boenisch. A comparision of MPI perfor-
mance on different MPPs. In Marian Bubak, Jack Dongarra, and Jerzy Wasniewski,
editors, Recent advances in Parallel Virtual Machine and Message Passing Inter-
face, volume 1332 of Lecture Notes in Computer Science, pages 25-32. Springer,
1997. 4th European PVM/MPI Users’ Group Meeting.

7. R. Reussner, P. Sanders, L. Prechelt, and M Miiller. SKaMPI: A detailed, accurate
MPI benchmark. In Vassuk Alexandrov and Jack Dongarra, editors, Recent advances
in Parallel Virtual Machine and Message Passing Interface, volume 1497 of Lecture
Notes in Computer Science, pages 52-59. Springer, 1998. 5th European PVM/MPI
Users’ Group Meeting.

