An intermediate temperature modeling study of the combustion of neopentane

PDF Version Also Available for Download.

Description

Low temperature hydrocarbon fuel oxidation proceeds via straight and branched chain reactions involving alkyl and alkyl peroxy radicals. These reactions play a critical role in the chemistry leading to knock or autoignition in spark ignition engines. As part of an on-going study in the understanding of low temperature oxidation of hydrocarbon fuels, the authors have investigated neopentane oxidation. A detailed chemical kinetic reaction mechanism is used to study the oxidation of neopentane in a closed reactor at 500 Torr pressure, and at a temperature of 753 K when small amounts of neopentane are added to slowly reacting mixtures of H{sub ... continued below

Physical Description

18 p.

Creation Information

Curran, H.J.; Pitz, W.J. & Westbrook, C.K. October 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 21 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Low temperature hydrocarbon fuel oxidation proceeds via straight and branched chain reactions involving alkyl and alkyl peroxy radicals. These reactions play a critical role in the chemistry leading to knock or autoignition in spark ignition engines. As part of an on-going study in the understanding of low temperature oxidation of hydrocarbon fuels, the authors have investigated neopentane oxidation. A detailed chemical kinetic reaction mechanism is used to study the oxidation of neopentane in a closed reactor at 500 Torr pressure, and at a temperature of 753 K when small amounts of neopentane are added to slowly reacting mixtures of H{sub 2} + O{sub 2} + N{sub 2}. The major primary products formed in the experiments included isobutene, 3,3-dimethyloxetan, acetone, methane and formaldehyde. The major secondary products were, 2,2-dimethyloxiran, propene, isobuteraldehyde, methacrolein, and 2-methylprop-2-en-1-ol. It was found that the current model was able to explain both primary and secondary product formation with a high degree of accuracy. Furthermore, it was found that almost all secondary product formation could be explained through the oxidation of isobutene--a major primary product.

Physical Description

18 p.

Notes

OSTI as DE96002041

Source

  • Fall meeting of the Western States Section of the Combustion Institute, Stanford, CA (United States), 30-31 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96002041
  • Report No.: UCRL-JC--122362
  • Report No.: CONF-9510145--1
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/125001 | External Link
  • Office of Scientific & Technical Information Report Number: 125001
  • Archival Resource Key: ark:/67531/metadc620780

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 17, 2016, 12:41 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 21

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Curran, H.J.; Pitz, W.J. & Westbrook, C.K. An intermediate temperature modeling study of the combustion of neopentane, report, October 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc620780/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.