Task 6.3/6.7.4 - Silicon Carbide Joining

PDF Version Also Available for Download.

Description

Future energy systems will be required to fire low-grade fuels and meet higher energy conversion efficiencies than today's systems. The steam cycle used at present is limited to a maximum temperature of 550 "C, because above that the stainless steel tubes deform and corrode excessively. To boost efficiency significantly, much higher working fluid temperatures are required. Although high-temperature alloys will suffice for the construction of these components in the near-term, the greatest efficiency increases can only be reached with the use of advanced structural ceramics such as silicon carbide (SiC). However, SiC does not melt, but instead sublimes at temperatures ... continued below

Creation Information

Hurley, John P. & Kay, John P. February 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Future energy systems will be required to fire low-grade fuels and meet higher energy conversion efficiencies than today's systems. The steam cycle used at present is limited to a maximum temperature of 550 "C, because above that the stainless steel tubes deform and corrode excessively. To boost efficiency significantly, much higher working fluid temperatures are required. Although high-temperature alloys will suffice for the construction of these components in the near-term, the greatest efficiency increases can only be reached with the use of advanced structural ceramics such as silicon carbide (SiC). However, SiC does not melt, but instead sublimes at temperatures over 2000 "C. Therefore, it is not possible to join pieces of it through welding, and most brazing compounds have much lower melting points so the joints lose strength at temperatures much lower than the maximum use temperature of the SiC. Since larger objects, such as heat exchangers, cannot be easily created from smaller ceramic pieces, the size of the SiC structures that can presently be manufactured are limited by the size of the sintering furnaces (approximately 10 feet for sintered alpha silicon carbide). In addition, repair of the objects will require the use of field joining techniques. Some success has been made by causing silicon and carbon to react at 1400 0-1 500 "C to form SiC in a joint (Rabin, 1995) but these joints contain continuous channels of unreacted silicon which cause the joints to corrode and creep excessively at temperatures below 1260 "C (Breder, 1996). At present, no joining techniques are available that allow sintered alpha SiC to be used to its full potential.

Subjects

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00001677
  • Report No.: DE-FC21-93MC30097--53
  • Grant Number: FC21-93MC30097
  • DOI: 10.2172/1677 | External Link
  • Office of Scientific & Technical Information Report Number: 1677
  • Archival Resource Key: ark:/67531/metadc620757

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 8, 2016, 1:35 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hurley, John P. & Kay, John P. Task 6.3/6.7.4 - Silicon Carbide Joining, report, February 1, 1998; Morgantown, West Virginia. (digital.library.unt.edu/ark:/67531/metadc620757/: accessed April 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.