Complete regional waveform modeling to estimate seismic velocity structure and source parameters for CTBT monitoring

PDF Version Also Available for Download.

Description

The velocity structures and source parameters estimated by waveform modeling provide valuable information for CTBT monitoring. The inferred crustal and uppermost mantle structures advance understanding of tectonics and guides regionalization for event location and identification efforts. Estimation of source parameters such as seismic moment, depth and mechanism (whether earthquake, explosion or collapse) is crucial to event identification. In this paper we briefly outline some of the waveform modeling research for CTBT monitoring performed in the last year. In the future we will estimate structure for new regions by modeling waveforms of large well-observed events along additional paths. Of particular interest ... continued below

Physical Description

10 Megabytes pages

Creation Information

Bredbeck, T; Rodgers, A & Walter, W July 23, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The velocity structures and source parameters estimated by waveform modeling provide valuable information for CTBT monitoring. The inferred crustal and uppermost mantle structures advance understanding of tectonics and guides regionalization for event location and identification efforts. Estimation of source parameters such as seismic moment, depth and mechanism (whether earthquake, explosion or collapse) is crucial to event identification. In this paper we briefly outline some of the waveform modeling research for CTBT monitoring performed in the last year. In the future we will estimate structure for new regions by modeling waveforms of large well-observed events along additional paths. Of particular interest will be the estimation of velocity structure in aseismic regions such as most of Africa and the Former Soviet Union. Our previous work on aseismic regions in the Middle East, north Africa and south Asia give us confidence to proceed with our current methods. Using the inferred velocity models we plan to estimate source parameters for smaller events. It is especially important to obtain seismic moments of earthquakes for use in applying the Magnitude-Distance Amplitude Correction (MDAC; Taylor et al., 1999) to regional body-wave amplitudes for discrimination and calibrating the coda-based magnitude scales.

Physical Description

10 Megabytes pages

Source

  • 21st Seismic Research Symposium: Technologies for Monitoring the Comprehensive Nuclear Test Ban Treaty, Las Vegas, NV (US), 09/21/1999--09/24/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-134308
  • Report No.: GC0402000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 14654
  • Archival Resource Key: ark:/67531/metadc620756

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 23, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 5, 2016, 9:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bredbeck, T; Rodgers, A & Walter, W. Complete regional waveform modeling to estimate seismic velocity structure and source parameters for CTBT monitoring, article, July 23, 1999; California. (digital.library.unt.edu/ark:/67531/metadc620756/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.