CIS-Type PV Device Fabrication by Novel Techniques; Phase I Annual Technical Report, 1 July 1998 - 30 June 1999

PDF Version Also Available for Download.

Description

This report describes work performed by International Solar Electric Technology, Inc. (ISET) during phase I of the R&D partnership subcontract titled ''CIS-Type PV Device Fabrication by Novel Techniques.'' The objective of this program is to bring ISET's novel non-vacuum CIS technology closer to commercialization by concentrating on issues such as device-efficiency improvement, larger-bandgap absorber growth, and module fabrication. Advances made in CIS and related compound solar cell fabrication processes have clearly shown that these materials and device structures can yield power conversion efficiencies in the 15%-20% range. However, many of the laboratory results on CIS-type devices have been obtained using ... continued below

Physical Description

26 pages

Creation Information

Basol, B. M.; Halani, A.; Kapur, V. K.; Leidholm, C. R.; Norsworthy, G. & Roe, R. August 9, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report describes work performed by International Solar Electric Technology, Inc. (ISET) during phase I of the R&D partnership subcontract titled ''CIS-Type PV Device Fabrication by Novel Techniques.'' The objective of this program is to bring ISET's novel non-vacuum CIS technology closer to commercialization by concentrating on issues such as device-efficiency improvement, larger-bandgap absorber growth, and module fabrication. Advances made in CIS and related compound solar cell fabrication processes have clearly shown that these materials and device structures can yield power conversion efficiencies in the 15%-20% range. However, many of the laboratory results on CIS-type devices have been obtained using relatively high-cost vacuum-based deposition techniques. The present project was specifically geared toward developing a low-cost, non-vacuum ''particle deposition'' method for CIS-type absorber growth. There are four major processing steps in this technique: (i) preparation of a starting powder containing all or some of the chemical species constituting CIS, (ii) preparation of an ink using the starting powder, (iii) deposition of the ink on a substrate in the form of a thin precursor layer, and (iv) conversion of the precursor layer into a fused photovoltaic absorber through annealing steps. During this Phase I program, ISET worked on tasks that were geared toward the following goals: (i) elimination of back-contact problems, (ii) growth of large-bandgap absorbers, and (iii) fabrication of mini-modules. As a result of the Phase I research, a Mo back-contact structure was developed that eliminated problems that resulted in poor mechanical integrity of the absorber layers. Sulfur inclusion into CIS films through high-temperature sulfurization in H{sub 2}S gas was also studied. It was determined that S diffusion was a strong function of the stoichiometry of the CIS layer. Sulfur was found to diffuse rapidly through the Cu-rich films, whereas the diffusion constant was at least three orders of magnitude smaller in Cu-poor layers. Additionally, S profiles in sulfurized CIS films were correlated with the distribution of the grain size through the film. Absorbers containing large concentrations of Ga near the Mo contact interface also had large S content in that same region due to the small grain size of the Ga-containing material. New work on monolithic integration procedures overcame the problem of low shunt resistance and yielded CuIn(S,Se){sub 2} (CISS) mini-modules of about 64-cm{sup 2} area with close to 7% efficiency.

Physical Description

26 pages

Source

  • Other Information: PBD: 9 Aug 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00012226
  • Report No.: NREL/SR-520-26930
  • Grant Number: AC36-99GO10337
  • DOI: 10.2172/12226 | External Link
  • Office of Scientific & Technical Information Report Number: 12226
  • Archival Resource Key: ark:/67531/metadc620676

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 9, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • March 31, 2016, 2:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Basol, B. M.; Halani, A.; Kapur, V. K.; Leidholm, C. R.; Norsworthy, G. & Roe, R. CIS-Type PV Device Fabrication by Novel Techniques; Phase I Annual Technical Report, 1 July 1998 - 30 June 1999, report, August 9, 1999; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc620676/: accessed December 12, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.