Commissioning of the long-pulse fast wave current drive antennas for DIII-D

PDF Version Also Available for Download.

Description

Two new four-element fast wave current drive antennas have been installed on DIII-D. These antennas are designed for 10-s pulses at 2 MW each in the frequency range of 30 to 120 MHz. Each element comprises two poloidal segments fed in parallel in order to optimize plasma coupling at the upper end of the frequency range. The antennas are mounted on opposite sides of the vacuum vessel, in ports designated 0{degrees} and 180{degrees} after their toroidal angle. Each antenna array is fed by a single transmitter. The power is first split two ways by means of a 3-dB hybrid coupler, ... continued below

Physical Description

4 p.

Creation Information

Baity, F.W.; Barber, G.C.; Goulding, R.H.; Hoffman, D.J.; DeGrassie, J.S.; Pinsker, R.I. et al. September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Two new four-element fast wave current drive antennas have been installed on DIII-D. These antennas are designed for 10-s pulses at 2 MW each in the frequency range of 30 to 120 MHz. Each element comprises two poloidal segments fed in parallel in order to optimize plasma coupling at the upper end of the frequency range. The antennas are mounted on opposite sides of the vacuum vessel, in ports designated 0{degrees} and 180{degrees} after their toroidal angle. Each antenna array is fed by a single transmitter. The power is first split two ways by means of a 3-dB hybrid coupler, then each of these lines feeds a resonant loop connecting a pair of array elements. The power transfer during asymmetric phasing is shunted between resonant loops by a decoupler. The resonant loops are fitted with line stretchers so that multiple frequencies of operation are possible without reconfiguring the transmission line. Commissioning of these antennas has been underway since June 1994. Several deficiencies in the transmission line system were uncovered during initial vacuum conditioning, including problems with the transmission line insulators and with the drive rods for the variable elements. The former was solved by replacing the original alumina insulators, and the latter has been avoided during operation to date by positioning the tuners to avoid high voltage appearing on the drive rods. A modified design for the drive rods will be implemented before RF operations resume operation June 1995. New transmitters were procured from ABB for the new antennas and were installed in parallel with the antenna installation. During initial vacuum conditioning of the antenna in the 180{degree} port a fast digital oscilloscope was used to try to pinpoint the location of arcing by a time-of-flight technique and to develop an understanding of the typical arc signature in the system.

Physical Description

4 p.

Notes

INIS; OSTI as DE95017414

Source

  • 11. topical conference on radio frequency power in plasmas, Palm Springs, CA (United States), 17-19 May 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95017414
  • Report No.: CONF-9505284--3
  • Grant Number: AC05-84OR21400;AC03-89ER51114
  • Office of Scientific & Technical Information Report Number: 106674
  • Archival Resource Key: ark:/67531/metadc620664

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 2, 2016, 4:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Baity, F.W.; Barber, G.C.; Goulding, R.H.; Hoffman, D.J.; DeGrassie, J.S.; Pinsker, R.I. et al. Commissioning of the long-pulse fast wave current drive antennas for DIII-D, article, September 1, 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc620664/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.