The Los Alamos National Laboratory source geometry experiment

PDF Version Also Available for Download.

Description

The Source Geometry Experiment was successfully conducted over the time period 17 April to 7 May 95. Recording in the mine was conducted 24 April to 4 May 95. Five single sources were instrumented that included four cylindrical charges at different burdens (distance from the free face) and a pseudo-spherical charge. Nine production shots conducted during the two week visit to the mine were also recorded. Included in these production shots were a number of explosions designed to primarily bulk (no cast) the overburden and a number which cast material into the mine pit. Instrumentation was divided into six primary ... continued below

Physical Description

12 p.

Creation Information

Stump, B.W.; Pearson, D.C.; Edwards, C.L. & Baker, D.F. September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Source Geometry Experiment was successfully conducted over the time period 17 April to 7 May 95. Recording in the mine was conducted 24 April to 4 May 95. Five single sources were instrumented that included four cylindrical charges at different burdens (distance from the free face) and a pseudo-spherical charge. Nine production shots conducted during the two week visit to the mine were also recorded. Included in these production shots were a number of explosions designed to primarily bulk (no cast) the overburden and a number which cast material into the mine pit. Instrumentation was divided into six primary types: (1) Near-source accelerometers were deployed at distances of approximately 20 to 300 m [14, three-component 25 g/volt accelerometers and 16, three-component 1 g/volt accelerometers]; (2) Linear array of velocity gauges to quantify wave propagation effects [4-11 three component strong motion velocity gauges]; (3)Far-field velocity gages deployed in an azimuthal array around the mine at ranges from 500 to 2500 m [8, three component velocity gauges]; (4) High speed film and multiple camera video designed to quantify the two and three dimensional affects around the explosions [2 high speed cameras and 3 Hi-8 video cameras]; (5) Velocity of detonation and detonation time measurements of selected explosions [2 VODR systems]; and (6) Pre and post shot laser survey. Any one shot had as many as 154 channels of data. Although the complete data set is still being assembled, quality checked and analyzed, it appears that nearly 2,000 channels of data were successfully recovered during the experiment. Preliminary analysis of the data illustrates the: (1) Significant spall accompanied both the cylindrical and spherical single sources; (2) Similarity of waveforms from the cylindrical and spherical single sources; (3) Strong variations in the body and surface wave generation from the nine production shot.

Physical Description

12 p.

Notes

OSTI as DE95016977

Subjects

Source

  • 17. annual seismic research symposium on monitoring a comprehensive test ban treaty, Scottsdale, AZ (United States), 11-15 Sep 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016977
  • Report No.: LA-UR--95-2690
  • Report No.: CONF-9509211--6
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 103062
  • Archival Resource Key: ark:/67531/metadc620651

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 25, 2016, 8:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Stump, B.W.; Pearson, D.C.; Edwards, C.L. & Baker, D.F. The Los Alamos National Laboratory source geometry experiment, article, September 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc620651/: accessed November 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.