Melt-Dilute Treatment of Spent Nuclear Fuel Assemblies from Research and Test Reactors

PDF Version Also Available for Download.

Description

The Savannah River Site is the US Department of Energy''s preferred site for return and treatment of all aluminum-base, spent, research and test reactor fuel assemblies. There are over 20,000 spent fuel assemblies now stored in different countries around the world, and by 2035 many will be returned to SRS for treatment and interim storage, in preparation for disposal in a geologic repository. The early fuel assemblies for research and test reactors were made using aluminum clad plates that were fabricated from highly enriched (93 percent) uranium-aluminum alloy. Later, powder metallurgical fabrication methods were developed to produce plate fuels with ... continued below

Physical Description

vp.

Creation Information

Peacock, H.B. September 29, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Savannah River Site is the US Department of Energy''s preferred site for return and treatment of all aluminum-base, spent, research and test reactor fuel assemblies. There are over 20,000 spent fuel assemblies now stored in different countries around the world, and by 2035 many will be returned to SRS for treatment and interim storage, in preparation for disposal in a geologic repository. The early fuel assemblies for research and test reactors were made using aluminum clad plates that were fabricated from highly enriched (93 percent) uranium-aluminum alloy. Later, powder metallurgical fabrication methods were developed to produce plate fuels with higher uranium contents using either uranium aluminide, uranium oxide or uranium silicide powders mixed with aluminum. Silicide fuel elements generally are fabricated with low enriched uranium containing less than 20 percent 235U. Following irradiation, the spent fuel assemblies are discharged from the reactor, and most assemblies have been stored in under-water pools, some since the early 1950''s. A number of disposition options including direct/co-disposal and melt-dilute treatment were evaluated recently. The melt-dilute technique was identified as the preferred method for treatment of aluminum-base spent fuel. The technique consists of melting the spent fuel assembly and adding depleted uranium to the melt for isotopic dilution to less than 20 percent 235U. Aluminum is added, if necessary, to produce a predetermined alloy composition. Additionally, neutron poisons may be added to the melt where they form solid solution phases or compounds with uranium and/or aluminum. Lowering the enrichment reduces both criticality and proliferation concerns for storage. Consolidation by melting also reduces the number of storage canisters. Laboratory and small-scale process demonstration using irradiated fuel is underway. Tests of the off gas absorption system have been initiated using both surrogate and irradiated RERTR mini fuel plates. An experimental L-Area facility (LEF) is planned to validate induction furnace operations, remote handling, and the off gas system for trapping volatile elements under plant operating conditions. Results from laboratory tests and the small-scale process studies are discussed.

Physical Description

vp.

Source

  • 22nd International Meeting on Reduced Enrichment for Research and Test Reactors, Budapest (HU), 10/03/1999--10/08/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: WSRC-MS-99-00751
  • Grant Number: AC09-96SR18500
  • Office of Scientific & Technical Information Report Number: 12513
  • Archival Resource Key: ark:/67531/metadc620578

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 29, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 5, 2016, 2:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Peacock, H.B. Melt-Dilute Treatment of Spent Nuclear Fuel Assemblies from Research and Test Reactors, article, September 29, 1999; South Carolina. (digital.library.unt.edu/ark:/67531/metadc620578/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.