USING YTTERBIUM-169 FOR SAFE AND ECONOMIC INDUSTRIAL RADIOGRAPHY

J. A. Dowalo

IDAHO NATIONAL ENGINEERING LABORATORY
Managed by the U.S. Department of Energy

Prepared for the
U.S. Department of Energy
Idaho Field Office
Under DOE Contract No. DE-AC07-84ID12435

Westinghouse Idaho Nuclear Company, Inc.
Idaho Falls, Idaho 83403
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
USING YTTERBIUM-169 FOR SAFE AND ECONOMICAL INDUSTRIAL RADIOGRAPHY

J. A. Dowalo

January 1994

Westinghouse Idaho Nuclear Company, Inc.

PREPARED FOR THE
DEPARTMENT OF ENERGY
IDAHO OPERATIONS OFFICE
UNDER CONTRACT DE-AC07-84ID12435

MASTER
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
The author would like to express appreciation to Mr. J. Stone for his assistance in performing test radiographs and providing basic research data in the preparation of this report.

Thanks also to Mr. Bob Kelly and Mr. Fred Melmon both of Amersham Corporation for the use of their facilities and assistance in preparing this report.
INTRODUCTION
Safety has become an issue of paramount importance for industrial radiography. Many NDE facilities and suppliers are finding the cost of performing radiography prohibitive due to heightened safety concerns for radiation area protection. The most common sources used in radiography, Iridium-192 and Cobalt-60, result in high radiation fields over a large area. Even when collimators are used large radiation fields can result from multicurie source radiography. Radiographic operations are being forced to find alternative test methods and techniques to the use of the old stand-by sources. These alternate methods are not always as comprehensive a test as full volumetric examination with radiography. Since Iridium and Cobalt are in such wide spread use, they are sometimes called upon to perform test of materials which are not in their optimum sensitivity range.

Safety regulations For the Department of Energy and local on site concerns for safe field radiographic operation at the Idaho Chemical Processing Plant prompted a search for an alternative to Iridium-192 radiography. Several papers since 1971 have cited Ytterbium-169 as requiring small radiation areas (protection zones) in field situations. Small radiation areas would provide improved safety with a smaller area to protect while reducing cost associated with the number of personnel required to maintain a radiographic area.

EQUIPMENT
Accessories to Ir-192 exposure devices are available to allow use of the same equipment for Yb-169 radiography. For our work we used Amertest 660 Projector with Yb-169 source assembly 918 and a special adapter for the guide tube to eliminate attenuation at the tip. (See fig 1 for photo of equipment setup.)
Tests were conducted using a 3.81 curie 1x1 mm Yb-169 source to determine actual radiation levels existing at a typical field radiographic setup. The survey results are depicted in figure 2 and show significant reduction of radiation zone as to that compared of a 50 curie Ir-192 source under similar conditions. Iridium 192 would have radiation readings 100 times that of Yb-169.
Figure 2 - TYPICAL SURVEY RESULTS WITH 3.81 ci OF YTTERBIUM-169
OPTIMUM SOURCE
During the research and testing of Ytterbium-169 sources it was realized that the energy spectrum was ideal for the majority of component thickness radiographed at the ICPP. Over 93% of all piping radiographed at the ICPP are less than .511 total thickness and under 3" nominal pipe size.

Linear absorption coefficients (Halmshaw 1981) justify x-ray equivalent performance of Yb-169 sources. Ir-192 is equivalent to X-rays in the 800 - 900 kv range, the corresponding equivalences for Yb-169 are more specimen thickness dependent and confirms Yb-169 radiations closely match X-ray ratings normally used in practical x-ray examination of steel. See figure 3 for a comparison of Yb-169 and X-ray recommendations found in ASME Sec V.

<table>
<thead>
<tr>
<th>THICKNESS OF STEEL</th>
<th>Yb-169 KV</th>
<th>ASME SEC V KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08" (2.0 mm)</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>0.2" (5.0 mm)</td>
<td>160</td>
<td>190</td>
</tr>
<tr>
<td>0.4" (10.0 mm)</td>
<td>195</td>
<td>330</td>
</tr>
<tr>
<td>0.6" (15.0 mm)</td>
<td>280</td>
<td>480</td>
</tr>
</tbody>
</table>

Figure 3- Comparison of Ytterbium-169 and X-ray optimum energy for exposures.

Radiographic techniques were shot to evaluate the quality of radiographs produced with Ytterbium-169. The table below shows technique parameters used and ASTM E-142 penetrameter sensitivity achieved.

<table>
<thead>
<tr>
<th>RADIOGRAPHIC TECHNIQUES</th>
<th>SFD</th>
<th>PENE</th>
<th>EXPOS TIME</th>
<th>FILM H&D</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.2 Step wedge blocks one each: Hastelloy; Nitronic 50; Carpenter 20; and 304 Stainless Steel</td>
<td>6"</td>
<td>5/7</td>
<td>5 min</td>
<td>ok</td>
<td>high contrast & definition</td>
</tr>
<tr>
<td>No. 4s Elliptical exposure; 1/2" sch40 SST</td>
<td>6"</td>
<td>7</td>
<td>13 min</td>
<td>2.7</td>
<td>1-T IQI sensitivity</td>
</tr>
<tr>
<td>No. 8 Panoramic exposure; 2" sch40 pipe SST</td>
<td>1"</td>
<td>F7</td>
<td>5 min</td>
<td></td>
<td>2-T IQI sensitivity</td>
</tr>
</tbody>
</table>
CONCLUSIONS
Ytterbium-169 sources can be used to replace Iridium sources for radiography of steel less than .5" thickness with improved safety and reduced cost. Any time the size of a radiography radiation zone can be reduced, improved safety is the result. Reducing the number of exposures required to cover a particular item radiographed also has its impact on improving safety by avoiding additional exposures of the
sources within their range of material size and thickness can be realized if careful planning is performed. Radiographic personnel would have to be trained in the use of Ytterbium sources and given the opportunity to practice with the source to become proficient in economic application of its use.

REFERENCES

APPENDIX A

The Fuel Processing Restoration (FPR) project was designed to replace most of the chemical reprocessing facilities at the ICPP. Piping fabrication estimates for this project were used to estimate how often Yb-169 sources could be used in the course of piping examinations. The results are tabulated below.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>THICKNESS</th>
<th>QUANTITY</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe welds 3" and smaller</td>
<td>Schedule 40</td>
<td>28,062</td>
<td>41%</td>
</tr>
<tr>
<td>Pipe welds 2" and smaller</td>
<td>Schedule 80</td>
<td>35,675</td>
<td>52.5%</td>
</tr>
<tr>
<td>Pipe welds 1" and smaller</td>
<td>over sch 80</td>
<td>1151</td>
<td>1.7%</td>
</tr>
<tr>
<td>Total welds applicable Yb-169</td>
<td></td>
<td>64,888</td>
<td>95%</td>
</tr>
<tr>
<td>Total welds greater than 2"</td>
<td>all sch</td>
<td>13,702</td>
<td>20%</td>
</tr>
</tbody>
</table>

62% of all welds were estimated to be radiographed for the project. If only half of the welds 2" and larger were radiographed using panoramic exposures then 13,702 separate exposures would be saved. This would save 27,404 pieces of film costing approximately $125.00 per box of 100 film. The total film savings equals $34,250.00 for panoramic exposures. This savings does not consider the avoidance of generating waste chemicals from film processing which would require disposal.

When establishing radiographic areas in the field using Ir-192 experience at the ICPP has indicated that an average of 1.5 barrier guards in addition to the radiographic crew are needed to assist in keeping people out of the radiation and high radiation areas. Assuming approximately .5 hours of field operation time for each weld radiographed and 12,538 field radiographic welds, then 6,269 field radiographic operation hours would be required for the FPR project. If one-third of the barrier guard monitors could be avoided due to the reduced size of the radiation field when using Yb-169 source instead of Ir-192, then approximately $156,725.00 could be saved in field radiography cost during the course of the project lasting four years.
Ytterbium sources cost approximately $5000.00 for a 1x1 mm source at 7 to 10 ci. Iridium sources, on contract, cost $750.00 each for 100 ci. .1x.1 inch source. Ytterbium half life 32 days can effectively be used around 3 half life cycles, therefore requiring a new source about every 3 months. Iridium is presently being ordered at the ICPP on a 3 month cycle to ensure two cameras are maintained with sources of usable and efficient strength to perform radiography. To maintain one Yb-169 source at all times ready for use would cost $20,000.00 per year or $80,000.00 for the full course of the FPR project.

It can be easily seen that just by adding the use of Ytterbium to the FPR project that over $110,000.00 could be saved in radiography cost while enhancing the quality of radiography and reducing radiation exposure hazards.