Enigmatic electrons, photons, and ``empty`` waves

PDF Version Also Available for Download.

Description

A spectroscopic analysis is made of electrons and photons from the standpoint of physical realism. In this conceptual framework, moving particles are portrayed as localized entities which are surrounded by ``empty`` waves. A spectroscopic model for the electron Stands as a guide for a somewhat similar, but in essential respects radically different, model for the photon. This leads in turn to a model for the ``zeron``. the quantum of the empty wave. The properties of these quanta mandate new basis states, and hence an extension of our customary framework for dealing with them. The zeron wave field of a photon ... continued below

Physical Description

12 p.

Creation Information

MacGregor, M.H. August 22, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A spectroscopic analysis is made of electrons and photons from the standpoint of physical realism. In this conceptual framework, moving particles are portrayed as localized entities which are surrounded by ``empty`` waves. A spectroscopic model for the electron Stands as a guide for a somewhat similar, but in essential respects radically different, model for the photon. This leads in turn to a model for the ``zeron``. the quantum of the empty wave. The properties of these quanta mandate new basis states, and hence an extension of our customary framework for dealing with them. The zeron wave field of a photon differs in one important respect from the standard formalism for an electromagnetic wave. The vacuum state emerges as more than just a passive bystander. Its polarization properties provide wave stabilization, particle probability distributions, and orbit quantization. Questions with regard to special relativity are discussed.

Physical Description

12 p.

Notes

INIS; OSTI as DE96000701

Source

  • The present status of the quantum theory of light: a symposium to honor Jean-Piere Vigier, Toronto (Canada), 27-30 Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96000701
  • Report No.: UCRL-JC--121831
  • Report No.: CONF-9508171--1
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 114023
  • Archival Resource Key: ark:/67531/metadc620491

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 22, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 16, 2016, 6:49 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

MacGregor, M.H. Enigmatic electrons, photons, and ``empty`` waves, article, August 22, 1995; California. (digital.library.unt.edu/ark:/67531/metadc620491/: accessed October 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.