Stress corrosion cracking of candidate materials for nuclear waste containers

PDF Version Also Available for Download.

Description

Types 304L and 316L stainless steel (SS), Incoloy 825, Cu, Cu-30%Ni, and Cu-7%Al have been selected as candidate materials for the containment of high-level nuclear waste at the proposed Yucca Mountain Site in Nevada. The susceptibility of these materials to stress corrosion cracking has been investigated by slow-strain-rate tests (SSRTs) in water which simulates that from well J-13 (J-13 water) and is representative of the groundwater present at the Yucca Mountain site. The SSRTs were performed on specimens exposed to simulated J-13 water at 93{degree}C and at a strain rate 10{sup {minus}7} s{sup {minus}1} under crevice conditions and at a ... continued below

Physical Description

37 p.

Creation Information

Maiya, P.S.; Shack, W.J. & Kassner, T.F. September 1, 1989.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Types 304L and 316L stainless steel (SS), Incoloy 825, Cu, Cu-30%Ni, and Cu-7%Al have been selected as candidate materials for the containment of high-level nuclear waste at the proposed Yucca Mountain Site in Nevada. The susceptibility of these materials to stress corrosion cracking has been investigated by slow-strain-rate tests (SSRTs) in water which simulates that from well J-13 (J-13 water) and is representative of the groundwater present at the Yucca Mountain site. The SSRTs were performed on specimens exposed to simulated J-13 water at 93{degree}C and at a strain rate 10{sup {minus}7} s{sup {minus}1} under crevice conditions and at a strain rate of 10{sup {minus}8} s{sup {minus}1} under both crevice and noncrevice conditions. All the tests were interrupted after nominal elongation strains of 1--4%. Examination by scanning electron microscopy showed some crack initiation in virtually all specimens. Optical microscopy of metallographically prepared transverse sections of Type 304L SS suggests that the crack depths are small (<10 {mu}m). Preliminary results suggest that a lower strain rate increases the severity of cracking of Types 304L and 316L SS, Incoloy 825, and Cu but has virtually no effect on Cu-30%Ni and Cu-7%Al. Differences in susceptibility to cracking were evaluated in terms of a stress ratio, which is defined as the ratio of the increase in stress after local yielding in the environment to the corresponding stress increase in an identical test in air, both computed at the same strain. On the basis of this stress ratio, the ranking of materials in order of increasing resistance to cracking is: Types 304L SS < 316L SS < Incoloy 825 {congruent} Cu-30%Ni < Cu {congruent} Cu-7%Al. 9 refs., 12 figs., 7 tabs.

Physical Description

37 p.

Notes

INIS; OSTI as DE90003827

Source

  • NACE Corrosion `90, Las Vegas, NV (United States), 23-27 Apr 1990

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE90003827
  • Report No.: CONF-900403--3
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 137660
  • Archival Resource Key: ark:/67531/metadc620433

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1989

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Dec. 15, 2015, 6:03 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Maiya, P.S.; Shack, W.J. & Kassner, T.F. Stress corrosion cracking of candidate materials for nuclear waste containers, article, September 1, 1989; Illinois. (digital.library.unt.edu/ark:/67531/metadc620433/: accessed December 13, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.